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Veolia 

• PhD funded by Veolia  

 

• Veolia issues 

– Design of efficient urban drainage systems 

– Considering SUDS hydraulic performance  

– Applicable to large urban scales 

– Good balance between overflow risk and investment costs 

 

• PhD deliverable: User-friendly computer tool  
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Veolia is the global leader in 

optimized resource management, 

providing innovative waste, water 

and energy management solutions 

 

168,800 employees worldwide 

300 researchers & scientists 

SUDS: Sustainable Urban Drainage System (aka LID Low Impact Development in the US) 
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Source: STOMP 

Bukit Timah, 19 Nov 2009 
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7 months later 

Source:  Twitter 

Orchard, 16 June 2010 



Introduction 
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From US Environmental Protection Agency 
From Seattle Public Utilities 

Illustration of Low Impact Development (LID) 



Introduction 

• First comprehensively 

designed drainage system 

was installed in Hamburg in 

1843 

• Success was emulated in 

America and other European 

countries 

• Designs based on empirical 

equations or look-up tables 
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Outline of the main sewage system, Hamburg, Germany, 1857 

Source: We Are Water Foundation 



Introduction 

• IDF curves 

(intensity-

duration-

frequency) first 

derived in 1930s 

• Marked the 

beginnings of 

‘design storms’ 
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Introduction 

• Early optimization techniques in 1960s:  LP,  NLP,  DP 

– Oversimplification and inaccurate hydrological and hydraulic evaluations 

– Curse of dimensionality 

• Hydrological and hydraulic computation models developed in 1970s  

• Current commonly used optimization technique:  Metaheuristics  

– Allow for precise hydraulic evaluations using simulation 

– Computationally expensive 
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Mays, L. W., & Wenzel Jr, H. G. (1976). Optimal design of multilevel branching sewer systems. Water Resources Research, 12(5), 913-917. 
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Water Resources Planning and Management, 144(11), 04018070. 



Challenges 

• Drainage solutions may only work well against design storms 

 

• Optimization-based design is computationally expensive 

– Large decision space 

– Challenging simulation runtime 
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Poor scalability:  

may prevent application to large watersheds  

Not robust 



Objectives 
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To develop a tool for the robust optimal design of urban drainage systems 

 

Features: 

• Able to provide optimal configuration (location, type, size, operations) of 

LID and sewer systems (pipes, pumps, valves, storage tanks) 

• Able to handle multiple objectives  

• Can be applied to various test cases readily for urban rehabilitation plan or 

master planning of new systems 

• Scalable (large catchment area, reasonable computation time) 

• User-friendly 

 

 



Research questions 

• Do design storms yield robust urban drainage systems? 

 

• How can we design (robust) optimal urban drainage systems at large 

urban scales within reasonable computation time? 
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DO DESIGN STORMS YIELD ROBUST DRAINAGE 

SYSTEMS? HOW RAINFALL DURATION, INTENSITY,  

AND PROFILE CAN AFFECT DRAINAGE PERFORMANCE 
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CASE STUDY 
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Nhieu Loc-Thi Nghe (NL-TN) Basin 
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Loc, H. H., Babel, M. S., Weesakul, S., Irvine, K. N., & Duyen, P. M. (2015). Exploratory Assessment of SUDS Feasibility in Nhieu Loc-Thi Nghe Basin, Ho Chi Minh 

City, Vietnam. International Journal of Environment and Climate Change, 91-103. 



Precipitation for NL-TN Basin 
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Precipitation for NL-TN Basin 
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METHODS 
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Computational framework 
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I. Sensitivity 

Analysis 

II. Simulation-

optimization 

IV. Robustness 

Analysis 
III. Statistical analysis and  

simulation of rainfall events 

Rainfall data Set of all decision variables 

Reduced set 

of decision 

variables 

Model joint distribution 
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Likelihood of rainfall events 
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20 

I. Sensitivity 

Analysis 

II. Simulation-

optimization 

IV. Robustness 

Analysis 
III. Statistical analysis and  

simulation of rainfall events 

Rainfall data Set of all decision variables 

Reduced set 

of decision 

variables 

Model joint distribution 

of  rainfall intensity and 

duration using copula 

Model storm profile by 

Huff’s method  

Simulation under different 

rainfall conditions 

Robust solutions 

Rainfall events obtained 

from 10 years rainfall series 

Pareto-efficient 

solutions 

Design 

storm 

Solutions’ 

performance under 

different rainfall 

conditions 

Likelihood of rainfall events 



Sensitivity Analysis 

• Input: diameter of 308 pipes 

and area of 12 LIDs 

• Output: overflow reduction 

 

• EET and eFAST to reduce 

decision space from 320 

variables to 12 pipe variables 

and 8 LID variables 
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EET: Elementary effect test 

eFAST: extended Fourier amplitude sensitivity test 

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with 

practical workflow. Environmental Modelling & Software, 79, 214-232. 

Saltelli, A., Tarantola, S., & Chan, K. S. (1999). A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41(1), 39-56. 



Selected decision variables 
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Computational framework 
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Optimization problem -- formulation  
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𝐱∗ = argmin
𝐱
𝐉 𝐱  

 
 

𝐱 = 𝑥1, … , 𝑥𝑀𝑝 , 𝑥𝑀𝑝+1, … , 𝑥𝑀𝑝+𝑀𝐿  

 

 

𝐉 𝐱 =

−𝐽𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝐱

−𝐽𝑁𝑜𝑑𝑒 𝐱

𝐽𝐶𝑜𝑠𝑡 𝐱

 

Diameter of pipes Numbers of LID units 

Total # of LIDs 
Total # of pipes 

Reduction in total overflow volume 

Reduction in # of flooded nodes 

Decision variables 



Optimization problem -- formulation  
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𝐽𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 1 −
  𝑓𝑖,𝑡

𝑁
𝑖=1

𝑇
𝑡=1 𝐱

𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

 

 

𝐽𝑁𝑜𝑑𝑒 = 1 −
 𝟙  𝑓𝑖,𝑡 𝐱  > 0

𝑇
𝑡=1

𝑁
𝑖=1

𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

 

 

𝐽𝐶𝑜𝑠𝑡 = 𝛼 × 𝑥𝑗

𝑀𝑝

𝑗=1

× 𝑙𝑗 × 𝟙 𝑥𝑗>𝑑𝑗 + 𝛽𝑘 × 𝑎𝑘 × 𝑥𝑀𝑝+𝑘

𝑀𝐿

𝑘=1

 

Length of pipe j  

Total time instances 
Total # of nodes 

Overflow volume at i-th node at 
time t (SWMM) 

Total overflow volume for 
existing drainage system 

Original diameter of pipe j 

Unit cost of pipe  

Area of LID k 

Unit cost of LID k 

Total # of flooded nodes for 
existing drainage system 



Optimization problem -- algorithm 
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NSGAII + SWMM 

 

Set-up 

Population size:  200 

# of generations:  250 

# of function evaluations:  50,000 

# of random seeds:  10 

Time taken per random seed:  72 hours 

Initialize population 

Evaluate individual fitness 

Rank population 

Select parents 

Crossover and mutation 

Evaluate offspring fitness 

Stopping criteria met? Output 

Rank population (parents + offspring) 

Select individuals 

Yes No 
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary 

computation, 6(2), 182-197. 
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Analysis and generation of rainfall events 

• Duration fitted to lognormal 

distribution 

• Intensity fitted to gamma 

distribution 

• Joint probability distribution 

modeled by a Frank copula 

• 49 events selected with varying 

duration and intensity 
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Design 
storm 

Genest, C., & Favre, A. C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of hydrologic engineering, 12(4), 347-

368. 



Analysis and generation of rainfall events 
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Design 
storm 

Huff, F. A. (1990). Time distributions of heavy rainstorms in Illinois. Circular no. 173. 



Computational framework 
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Robustness metric 
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𝑆𝑠,𝑞 =  
1 𝐏𝐬,𝐪 ≥ 𝐓𝐬
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝐓𝐬 =
𝐽𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝐱𝐬
𝐽𝑁𝑜𝑑𝑒 𝐱𝐬

 

 

𝑅𝑠 =  𝑆𝑠,𝑞 × 𝑤𝑞

𝑁𝐸

𝑞=1

 

 

𝑤𝑞 =
𝑃𝑟𝑞× 𝐹𝑞

 𝑃𝑟𝑙× 𝐹𝑙
𝑁𝐸
𝑙=1

 

Solution-specific  
performance threshold 

Performance of solution s in event q 

Weight of event q 

Robustness of solution s 

Success of solution s in event q 

# of rainfall events that have overflow in 
existing drainage system 

Probability of event q 

Overflow volume in existing 
drainage system in event q 

Herman, J. D., Reed, P. M., Zeff, H. B., & Characklis, G. W. (2015). How should robustness be defined for water systems planning under change?. Journal of Water 

Resources Planning and Management, 141(10), 04015012. 



RESULTS 
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Performance of Pareto-efficient solutions 
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Pipe expansions are more effective than LIDs 

at controlling pluvial flood in the NL-TN basin 



Robustness of solutions 
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None of the Pareto-efficient solutions are perfectly robust! 



Performance of each solution 
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Robustness is primarily determined by 

pipe expansions 

All solutions underperformed in some 

rainfall events 



No. of successes for each rainfall event 
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Many solutions underperformed 

in intense events 

 

All solutions underperformed in 

small events 



Mean performance of solutions for all rainfall events 
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Mean overflow reduction for 

design storm is 43% 

 

Overflow reduction is more 

sensitive to rainfall depth and 

intensity 



Conclusions 

• None of drainage solutions are completely robust 

 

• Pipe expansions in NL-TN Basin are more effective than LIDs to reduce 

flood and increase robustness 

 

• Solutions are not robust for 2 types of rainfall events: 

– Less intense but longer rainfall events which have greater depth than the design storm 

– Small, yet frequent, rainfall events 

 

• Stochastic rainfall events need to be included within the design process 
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HOW TO DESIGN ROBUST OPTIMAL URBAN 

DRAINAGE SYSTEMS 
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III. Statistical analysis and  

simulation of rainfall events 

Rainfall data 
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Computational framework 
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Surrogate-assisted computational framework 
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of decision 

variables 

Robust solutions 

Solutions’ 

performance  

under 

independent 

set 

I. Statistical analysis and  

simulation of rainfall events 

Rainfall data 

Model joint distribution 

of  rainfall intensity and 

duration using copula 

Model storm profile by 

Huff’s method  

Selection of rainfall events 

Rainfall events obtained 

from 10 years rainfall series 

Likelihood of rainfall events 
Set of 

stochastic 

rainfall events 
Simulation under 

independent set of 

stochastic rainfall events 
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Ideas 

• Iterative update of surrogate models 

 

• Multi-fidelity models 

– Using both low-fidelity (surrogate) and 

high-fidelity (simulation) models to 

improve accuracy of model estimates 

 

• Decomposition of network  

 

42 

Akhtar, T., & Shoemaker, C. A. (2019). Efficient Multi-Objective Optimization through Population-based Parallel Surrogate Search. arXiv preprint arXiv:1903.02167. 

Peherstorfer, B., Willcox, K., & Gunzburger, M. (2016). Optimal model management for multifidelity Monte Carlo estimation. SIAM Journal on Scientific 

Computing, 38(5), A3163-A3194. 

Pecci, F., Abraham, E., & Stoianov, I. (2019). Model Reduction and Outer Approximation for Optimizing the Placement of Control Valves in Complex Water 

Networks. Journal of Water Resources Planning and Management, 145(5), 04019014. 



 

 

MILESTONES & TIMELINE 
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Timeline 

• What I have done 
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EWRI: Environmental & Water Resources Institute  

JWRPM: Journal of Water Resources Planning and Management 

QE 
May 2017 

Aug 2017 

Summer Project 

EWRI Congress 
May 2018 

Mar 2019 
Manuscript 
submitted to 

JWRPM 

PE 
 Apr 2019 



Timeline 

• What I plan to do 

EWRI Congress 
May 2019 

UT Austin 
May - Aug 2019 

Surrogate-
assisted 

optimization 
Mar/Apr 2020 

User interface 
Apr/May 2020 

Thesis defense 
Jul/Aug 2020 

Graduation 
 Sep 2020 
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Sensitivity analysis (round 1) 

• Elementary effect test (EET) 

– Input factors: 308 pipes + 12 LIDs 

– Outputs: Total overflow reduction, peak flow reduction 

– 78 pipes and 8 LIDs selected 

• Positive 95% lower one-sided bound for mean of EEs for either output 
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1st EET results 
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Sensitivity analysis (round 2) 

• EET & eFAST 

–  Input factors: 78 pipes + 8 LIDs 

– Outputs: Total overflow reduction, peak flow reduction 

– 12 pipes and 8 LIDs selected 

• Ranked according to mean of EEs (for EET) and total order index (for eFAST) for each 

output 

• Selected if ranked in the top 20 in both eFAST and EET for the same output 
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eFAST: extended Fourier amplitude sensitivity test 



2nd EET results 
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eFAST results 
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Rainfall modelling 

Rainfall duration (in hours) is fitted to a lognormal distribution (mean = 

0.961, standard deviation = 0.709) 
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Rainfall modelling 

Rainfall intensity (in mm/hour) is fitted to a gamma distribution (shape = 

0.746, rate = 0.217). 
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Copula 

Consider the random vector 𝑋1, … , 𝑋𝑝  with continuous marginals 𝐹1 𝑥1 , … , 𝐹𝑝 𝑥𝑝 .  

 

By applying probability integral transform, we obtain the random vector  

𝑈1, … , 𝑈𝑝 = 𝐹1 𝑋1 , … , 𝐹𝑝 𝑋𝑝   

which has standard uniform marginals.  

 

The copula of 𝑋1, … , 𝑋𝑝  is then the joint cumulative distribution function of 

𝑈1, … , 𝑈𝑝 , namely: 

𝐶 𝑢1, … , 𝑢𝑝 = 𝑃𝑟 𝑈1 ≤ 𝑢1, … , 𝑈𝑝 ≤ 𝑢𝑝  
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Copula 

Six copulas considered: Gaussian, t, Clayton, Gumbel, Frank, and Joe 
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Random samples  

4,000 rainfall events randomly generated using the Frank copula (α = 1.4) 

and the univariate distributions for intensity and duration (grey dots) 
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Preliminary simulation-optimization 

• 10 initial random seeds:  

– 5 with population size 100 and 500 generations 

– 5 with population size 200 and 250 generations 

• Decision variables: 

– 16 pipe variables that reach full capacity for >3 hours since 

beginning of design storm 

– 12 LID variables 
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Preliminary simulation-optimization 
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Runtime dynamics 
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Preliminary simulation-optimization 
Simulation-optimization using  decision variables selected 

using sensitivity analysis 



Robustness analysis for flooded nodes reduction 
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