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— Applicable to large urban scales
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* PhD deliverable: User-friendly computer tool

SUDS: Sustainable Urban Drainage System (aka LID Low Impact Development in the US)
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Introduction

* Early optimization techniques in 1960s: LP, NLP, DP
— Oversimplification and inaccurate hydrological and hydraulic evaluations

— Curse of dimensionality
* Hydrological and hydraulic computation models developed in 1970s

* Current commonly used optimization technique: Metaheuristics
— Allow for precise hydraulic evaluations using simulation

— Computationally expensive

Mays, L.W,, & Wenzel Jr, H. G. (1976). Optimal design of multilevel branching sewer systems. Water Resources Research, 12(5),913-917.
Rossman, L.A. (2015). Storm water management model user's manual, version 5. 1. Cincinnati: National Risk Management Research Laboratory, Office of Research

and Development, US Environmental Protection Agency.
Wang, Q., Zhou, Q., Lei, X., & Savi¢, D.A. (2018). Comparison of Multiobjective Optimization Methods Applied to Urban Drainage Adaptation Problems. Journal of

Water Resources Planning and Management, 144(11), 04018070.



Challenges

* Drainage solutions may only work well against design storms

* Optimization-based design is computationally expensive
— Large decision space

— Challenging simulation runtime



Challenges

. MNot robust

Poor scalability:
may prevent application to large watersheds



Objectives

To develop a tool for the robust optimal design of urban drainage systems

Features:

Able to provide optimal configuration (location, type, size, operations) of
LID and sewer systems (pipes, pumps, valves, storage tanks)

Able to handle multiple objectives

Can be applied to various test cases readily for urban rehabilitation plan or
master planning of new systems

Scalable (large catchment area, reasonable computation time)
User-friendly



Research questions

* Do design storms yield robust urban drainage systems!?

* How can we design (robust) optimal urban drainage systems at large
urban scales within reasonable computation time!?



DO DESIGN STORMSYIELD ROBUST DRAINAGE
SYSTEMS? HOW RAINFALL DURATION, INTENSITY,
AND PROFILE CAN AFFECT DRAINAGE PERFORMANCE



CASE STUDY



Nhieu Loc-Thi Nghe (NL-TN) Basin

Legend

1 Nhieu Loc-Thi Nghe Basin
A Tan Son Hoa Rain Gauge

I Ho Chi Minh City

[ ] Vietnam

Loc, H. H., Babel, M. S.,Weesakul, S., Irvine, K. N., & Duyen, P. M. (2015). Exploratory Assessment of SUDS Feasibility in Nhieu Loc-Thi Nghe Basin, Ho Chi Minh
|5

City,Vietnam. International Journal of Environment and Climate Change, 91-103.



Precipitation for NL-TN Basin
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Precipitation for NL-TN Basin
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Sensitivity Analysis

* Input: diameter of 308 pipes
and area of |2 LIDs

* Output: overflow reduction

 EET and eFAST to reduce
decision space from 320

variables to |2 pipe variables
and 8 LID variables

~ Subcatchment 1

EET: Elementary effect test
eFAST: extended Fourier amplitude sensitivity test

Pianosi, F, Beven, K., Freer, J., Hall, ]. W, Rougier, J., Stephenson, D. B., & Wagener, T. (201 6). Sensitivity analysis of environmental models: A systematic review with
practical workflow. Environmental Modelling & Software, 79, 214-232.

Saltelli,A., Tarantola, S., & Chan, K. S. (1999).A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41(1), 39-56.

21



Selected decision variables

vgf:;:i} Pipe no. Shape Length, /; (m)  Size. d; (m) h::i;"{r:ij]n
X1 1 Rectangular closed 546 25x25 4
X2 2 Circular 360 1.5 2.5
X3 3 Circular 510 1.2 2.2
X4 4 Circular 180 1 2
X5 5 Rectangular closed 840 1.5x 2.8 4
Xg 6 Rectangular closed 600 1.2x2 4
X7 7 Rectangular closed 127 2x4 4
X5 B Rectangular closed 540 08x5 4
Xg 9 Rectangular closed 551 1.2x5 4
X0 10 Rectangular open 200 3.2x 10 42
X11 11 Rectangular open 610 2.7x 10 4
X2 12 Rectangular closed 000 1.8x4 4
LID Sub-catchment properties Maxi.mm.n
Sub-catchment no. Area (ha) Impervious %o no. of units
X3 Green roofs 1102
X4 Pervious pavements 1 3145 70 000
X|5 RWH system 1102
Xl6 RWH system 2 12.55 70 406
xX17 Green roofs 2726
XIR Pervious pavements 1400
X0 Urban green spaces 3 102 70 4000

X2 RWH system 2726




Computational framework

: Rainfall data
Design

storm

Reduced set
of decision
variables
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|l. Simulation- ‘
optimization



Optimization problem -- formulation

X" = arg min J(x)
X

Dlameter of pipes

Nuwmbers of LID units

X = (xl, ...,pr,pr+1, ...,pr+ML)

Decision variables
Total # of pipes
'_]0verflow (X)
J(x) = | —JNode(x)
]Cost (X)

Total # of LIDs

Reduction tn total overflow volume

Reduction tn # of flooded nooles

24



Optimization problem -- formulation

Total # of nodes

tal tivmee tnstane 7
Total e tnstances overflow volume at i-th node at

T N time t (SWMM
]OUGTfIOW —1-— t=1 Zi=1 fi,t (X) me ¢ ( )

F baseline
Total overflow volume for

existing draitnage system

N
Zi=1 U5 £ 00> 0)

existing drainage system

]Node -1 —

original diaweter of pipe /

Mp M Area of LID f
Cost __
Ji = E axxjxljx]l{xj>dj}+ E ,[)’kxakxpr+k
j=1 k:l ’
. Unit cost of LID &
Length of pipe / f
Unit cost of pipe

25



Optimization problem -- algorithm

Initialize population

%
Evaluate individual fitness NSGAIl + SWMM
%
Rank population
v Set-up
Select Earents Population size: 200
Crossover and mutation # of generations: 250
v . .
N Evaluate offspring fitness # of function evaluations: 50,000
v # of random seeds: 10
Rank population (%arents + offspring) Time taken per random seed: 72 hours
Select individuals
%
— No — Stopping criteria met? —— Yes —— Output

Deb, K., Pratap, A.,Agarwal, S., & Meyarivan, T.A. M.T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. [EEE transactions on evolutionary

computation, 6(2), 182-197.



Computational framework

Set of all decision variables : Rainfall data
Design
storm Rainfall events obtained
from 10 years rainfall series
|. Sensitivity / [1l. Statistical analysis and \
Analysis simulation of rainfall events
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of decision
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Il. Simulation- soluti

Model joint distribution
of rainfall intensity and
duration using copula

Model storm profile by

Huff’s method
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Rain Duration (hr)
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12

Analysis and generation of rainfall events

12 18
Rain Intensity (mm/hr)

24
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Probability of
occurrence

.

Destgn
storm

Duration fitted to lognormal
distribution

Intensity fitted to gamma
distribution

Joint probability distribution
modeled by a Frank copula

49 events selected with varying
duration and intensity

Genest, C., & Favre,A. C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of hydrologic engineering, 12(4), 347-

368.
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Computational framework

Robust solutions

|

V. Robusthess
Analysis

Solutions’
performance under
different rainfall
conditions




Robustnhess metric

Performance of solution s in event g

Success of solution s in event g Ssq = {
’ 0 otherwise

Solution-specific T joverflow (XS)]
erformance threshold s — Nod
pert JNode (x,)
# of rainfall events that have overflow tn
NE existing dratnage system.
Robustwness of solution s Rs = Ss,q X Wy
q=1

Probability of event g
PryX K,

welght of event g wy = overflow volume in existing

N
Zlfl PriXFy  drainage system in event g

Herman, J. D., Reed, P. M., Zeff, H. B., & Characklis, G.W. (2015). How should robustness be defined for water systems planning under change?. Journal of Water
Resources Planning and Management, 141(10),04015012.
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RESULTS
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Robustness of solutions

None of the Pareto-efficient solutions are perfectly robust!
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Performance of each solution
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No. of successes for each rainfall event

Profile 1
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Mean performance of solutions for all rainfall events
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Conclusions

None of drainage solutions are completely robust

* Pipe expansions in NL-TN Basin are more effective than LIDs to reduce
flood and increase robustness

* Solutions are not robust for 2 types of rainfall events:
— Less intense but longer rainfall events which have greater depth than the design storm

— Small, yet frequent, rainfall events

* Stochastic rainfall events need to be included within the design process



HOW TO DESIGN ROBUST OPTIMAL URBAN
DRAINAGE SYSTEMS
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Surrogate-assisted computational framework

Rainfall data Set of all decision variables Robust solutions
Rainfall events obtained
from 10 years rainfall series
4 )
|. Statistical analysis and Il. Surrogate-assisted IV. Robust.ness
simulation of rainfall events sensitivity analysis Ar.1aly.5|s
(validation)
Model joint distribution Model storm profile by Reduced set Solutions’
of rainfall intensity and : .
: : Huff’s method of decision performance
duration using copula )
variables under
independent
Likelihood of rainfall events set
Set of . Pareto-efficient
stochastic ( .S . i<ted ) solutions Simulation under
' . durrogate-assiste
Selection of rainfall events rainfall eyents &

independent set of
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Independent set of stochastic rainfall events
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Ildeas

* Iterative update of surrogate models
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Akhtar, T., & Shoemaker, C.A. (2019). Efficient Multi-Objective Optimization through Population-based Parallel Surrogate Search. arXiv preprint arXiv:1903.02167.
Peherstorfer, B., Willcox, K., & Gunzburger, M. (2016). Optimal model management for multifidelity Monte Carlo estimation. SIAM Journal on Scientific
Computing, 38(5),A3163-A3194.

Pecci, F,Abraham, E., & Stoianov, |. (2019). Model Reduction and Outer Approximation for Optimizing the Placement of Control Valves in Complex Water 4?)
Networks. Journal of Water Resources Planning and Management, 145(5), 04019014.
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Timeline

* What | have done

QE EWRI Congress
May 2017 May 2018
Aug 2017

Summer Project

EWRI: Environmental & Water Resources Institute
JWRPM: Journal of Water Resources Planning and Management

PE
Apr 2019
Mar 2019
Manuscript
submitted to
JWRPM
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Timeline

* What | plan to do

EWRI Congress
May 2019

UT Austin
May - Aug 2019

Surrogate-
assisted
optimization
Mar/Apr 2020

User interface
Apr/May 2020

Thesis defense
Jul/Aug 2020

Graduation
Sep 2020
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Sensitivity analysis (round 1)

* Elementary effect test (EET)
— Input factors: 308 pipes + |12 LIDs
— Outputs: Total overflow reduction, peak flow reduction
— 78 pipes and 8 LIDs selected

* Positive 95% lower one-sided bound for mean of EEs for either output
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Sensitivity analysis (round 2)

 EET & eFAST
— Input factors: 78 pipes + 8 LIDs

— Outputs: Total overflow reduction, peak flow reduction

— 12 pipes and 8 LIDs selected

* Ranked according to mean of EEs (for EET) and total order index (for eFAST) for each
output

* Selected if ranked in the top 20 in both eFAST and EET for the same output

eFAST: extended Fourier amplitude sensitivity test



2nd EET results
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eFAST results
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Rainfall modelling

Rainfall duration (in hours) is fitted to a lognormal distribution (mean =
0.961, standard deviation = 0.709)

Empirical and theoretical dens. Q-Q plot
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Rainfall modelling

Rainfall intensity (in mm/hour) is fitted to a gamma distribution (shape =
0.746,rate = 0.217).

Empirical and theoretical dens. Q-Q plot
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Copula

Consider the random vector (Xl, ...,Xp) with continuous marginals F; (x4), ..., E, (xp).

By applying probability integral transform, we obtain the random vector
(Uy, ., Up) = (FL(X1), ., By(Xp))

which has standard uniform marginals.

The copula of (Xl, ...,Xp) is then the joint cumulative distribution function of
(Ul, . Up), namely:
C(ul, ...,up) = Pr(U1 < Uy, ..., Up < up)



Copula

Six copulas considered: Gaussian, t, Clayton, Gumbel, Frank, and Joe

TABLE 1. Bivariate Archimedean Copulas

Family Bivariate Copula C(uy, u») Parameter «
Clayton (7" + uy® = 1)~ a >0
Gumbel exp{—[(=Inu)? + (= Inu>)?]"/} a > 1
Frank ~Lin(1 + e T2l @ #0
Joe I =[(1 —u))®+ (1 =) = (1 —up))?(1 — )] a > 1
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Random samples

4,000 rainfall events randomly generated using the Frank copula (o = |.4)
and the univariate distributions for intensity and duration (grey dots)
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Preliminary simulation-optimization

* |0 initial random seeds:
— 5 with population size 100 and 500 generations

— 5 with population size 200 and 250 generations
* Decision variables:

— |6 pipe variables that reach full capacity for >3 hours since
beginning of design storm

— |2 LID variables



Preliminary simulation-optimization
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Runtime dynamics
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Robustness analysis for flooded nodes reduction
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