class: inverse background-image: url('figures/fokienia-cross-section-small.png') background-size: contain --- class: inverse, middle, center background-image: url('figures/bhumibol-dam-cropped-darkened.png') # On the Value of Paleo-Reconstructed Data:<br>Understanding Long-Term Hydroclimatic Variability and<br>Its Implications to Water Resources Management .pull-left[ .white[ *Presented by:* **Nguyen Tan Thai Hung**] ] .pull-right[ .white[ *Advisors:* .narrow[**Assoc. Prof. Stefano Galelli** **Prof. Brendan Buckley**]] ] <div id="box1" class="streamflow"> <p id="text1"> streamflow </p> </div> --- # Instrumental streamflow data are not long enough <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-1-1.png" width="1008" style="display: block; margin: auto;" /> .left-footnote[Data: Global Streamflow Indices and Metadata Archive (GSIM; Do *et al*. 2018)] --- # Short records led to overallocation of water rights .pull-left[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-2-1.png" width="576" /> ] .pull-right[ <br> **The Colorado River Compact (1922)** Measured discharge: 20.2 km<sup>3</sup>/year Allocation : 18.6 km<sup>3</sup>/year Long term average : 16.3– 17.6 km<sup>3</sup>/year .grey[(Stockton and Jacoby, 1976; Woodhouse *et al.*, 2006, Robeson *et al.*, 2020)] ] -- .center.firebrick[The Colorado no longer reaches the Pacific Ocean.] -- .center.firebrick[The Compact's measurement period (1905–1922) was the wettest period in four centuries.] ??? Measured: 16.4 MAF Allocation: 7.5 MAF upper, 7.5 MAF lower Long-term: 13.2, 13.5, 14.3 1 km3 = 0.81 MAF 1 MAF = 1.23 km3 --- class: inverse # Tree rings are proxies of past climate .center[<img src="data:image/png;base64,#figures/glypto-30c-box1-small.png" height="460px"/>] .center.small[*Glyptostrobus pensilis* (swamp cypress) from Laos, image courtesy of Prof. Gretchen Coffman] --- # Dendrohydrology: We can build models to relate<br> tree rings to soil moisture and streamflow .pull-left[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-3-1.svg" width="504" style="display: block; margin: auto;" /> ] <!-- pull-left --> --- count: false # Dendrohydrology: We can build models to relate<br> tree rings to soil moisture and streamflow .pull-left[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-4-1.svg" width="504" style="display: block; margin: auto;" /> ] <!-- pull-left --> -- .pull-right.center[ <img src="data:image/png;base64,#figures/c2-mada.png" width="100%"/> The Monsoon Asia Drought Atlas (MADA) Cook *et al.* (2010) ] --- # Dendrohydrology has a long history<br>with water management .center[ .column-13[ <img src="data:image/png;base64,#figures/Truckee.jpg" style="height:300px"/> Hardman and Reil (1936) .small[Droughts and irrigation in the Truckee River Basin] ] <!-- column-13 --> .column-23[ <img src="data:image/png;base64,#figures/Hoover.jpg" style="height:300px"/> Schulman (1945) .small[Wartime reliability of Hoover Dam's hydropower production] ] <!-- column-23 --> .column-33[ <img src="data:image/png;base64,#figures/Lake-Powell.jpg" style="height:300px"/> Stockton and Jacoby (1976) .small[Long-term hydrology of Lake Powell & Colorado River Compact] ] <!-- column-33 --> ] <!-- center --> .left-footnote[Images: Wikipedia] --- class: middle, center .large[Streamflow reconstruction is an important **"planning and research tool."**] .right[(Meko and Woodhouse, 2011)] .left-footnote[Meko, D. M., & Woodhouse, C. A. (2011). Application of Streamflow Reconstruction to Water Resources Management. In M. K. Hughes, T. W. Swetnam, & H. F. Diaz (Eds.), Dendroclimatology: Progress and Prospects] -- .large[<br><span style="color:firebrick">**Applications in water management are still limited in scope and effectiveness.**</span>] --- .absolute-center[ .firebrick[ # Gaps ] .absolute-center[&] .steelblue[ # Contributions ] ] <!-- absolute-center --> .absolute-center[ <svg height="360" width="360"> <circle cx="180" cy="180" r="140" stroke="darkorange" stroke-width="5" fill="none"/> </svg> ] -- .top-left[.left[ .firebrick[ Most reconstructions rely on linear regression ] .steelblue[ Linear dynamical system (Chapter 2) 10.1002/2017WR022114 R package: **`ldsr`** ]]] -- .top-right[.right[ .firebrick[ Most reconstructions are annual ] .steelblue[ Multi-proxy, multi-season reconstruction (Chapter 3) 10.1002/essoar.10504791.1 R package: **`mbr`** ]]] <!-- top-right --> -- .mid-left[ <img src="data:image/png;base64,#figures/arrow-down.svg" height="100px"/> ] .bottom-left[.left[ .firebrick[ Few reconstructions in Asia, single-site ] .steelblue[ Monsoon Asia streamflow reconstruction (Chapter 4) 10.1029/2020WR027883 R package: **`pprR`** (in progress) ]]] <!-- bottom-left --> -- .mid-right[ <img src="data:image/png;base64,#figures/arrow-down.svg" height="100px"/> ] .bottom-right[.right[ .firebrick[ Limited used in water system operations ] .steelblue[ Stress-test with monthly reconstruction (Chapter 5) Publications planned R package: **`shy`** (in progress) ]]] <!-- bottom-right --> --- count: false .slant-left[ .firebrick[ # Gaps ] .steelblue[ # Contributions ] ] .slant-left[&] .slant-left[ <svg height="360" width="360"> <circle cx="180" cy="180" r="140" stroke="darkorange" stroke-width="5" fill="none"/> </svg> ] .top-left[.left[ .firebrick[ Most reconstructions rely on linear regression ] .steelblue[ Linear dynamical system (Chapter 2) 10.1002/2017WR022114 R package: **`ldsr`** ]]] <!-- top-left --> .top-right[.right[ .firebrick[ Most reconstructions are annual ] .steelblue[ Multi-proxy, multi-season reconstruction (Chapter 3) 10.1002/essoar.10504791.1 R package: **`mbr`** ]]] <!-- top-right --> .mid-left[ <img src="data:image/png;base64,#figures/arrow-down.svg" height="100px"/> ] .bottom-left[.left[ .firebrick[ Few reconstructions in Asia, single-site ] .steelblue[ Monsoon Asia streamflow reconstruction (Chapter 4) 10.1029/2020WR027883 R package: **`pprR`** (in progress) ]]] <!-- bottom-left --> .mid-right[ <img src="data:image/png;base64,#figures/arrow-down.svg" height="100px"/> ] .bottom-right[.right[ .firebrick[ Limited used in water system operations ] .steelblue[ Stress-test with monthly reconstruction (Chapter 5) Publications planned R package: **`shy`** (in progress) ]]] <!-- bottom-right --> .slant-right.steelblue[ .large[Time to use streamflow reconstructions in water management?] Galelli, Nguyen, Turner, and Buckley (submitted) (Chapter 6) ] --- class: inverse, middle .pull-left[ <br> # Chapter 2 # Linear Dynamical System Reconstruction ] .pull-right[ <img src="data:image/png;base64,#figures/chao-phraya-dem.png" width="70%"/> ] --- # The Chao Phraya River Basin is a third of Thailand's area .pull-left[<img src="data:image/png;base64,#figures/c2-map.png" width="90%"/>] .pull-right.center[ <img src="data:image/png;base64,#figures/nawarat-2.jpg" width="100%"/> .center.small[Station P.1, Nawarat Bridge, Chiang Mai. Photo: Rachel Koh] ] --- # Streamflow correlates well with the MADA .big-left[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-5-1.png" width="648" /> ] .small-right[ Streamflow reconstructions from drought atlases .small.grey[ Graham, N. E., & Hughes, M. K. (2007). Reconstructing the Mediaeval low stands of Mono Lake, Sierra Nevada, California, USA. The Holocene, 17(8), 1197–1210. DOI: 10.1177/0959683607085126 Adams, K. D., Negrini, R. M., Cook, E. R., & Rajagopal, S. (2015). Annually resolved late Holocene paleohydrology of the southern Sierra Nevada and Tulare Lake, California. Water Resources Research, 51(12), 9708–9724. DOI: 10.1002/2015WR017850 Ho, M., Lall, U., & Cook, E. R. (2016). Can a paleodrought record be used to reconstruct streamflow?: A case study for the Missouri River Basin. Water Resources Research, 52(7), 5195–5212. DOI: 10.1002/2015WR018444 Ho, M., Lall, U., Sun, X., & Cook, E. R. (2017). Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow. Water Resources Research, 53(4), 3047–3066. DOI: 10.1002/2016WR019632 ] ] --- # Flood generation mechanism:<br> excess rainfall on wet soil <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-6-1.png" width="648" style="display: block; margin: auto;" /> .left-footnote[ Stein, L., Pianosi, F., & Woods, R. (2020). Event‐based classification for global study of river flood generating processes. Hydrological Processes, 34(7), 1514–1529. DOI: 10.1002/hyp.13678 Lim, H. S., & Boochabun, K. (2012). Flood generation during the SW monsoon season in northern Thailand. Geological Society, London, Special Publications, 361(1), 7–20. DOI: 10.1144/SP361.3 ] --- # Most reconstructions do not account for catchment dynamics .firebrick.large[**Conventional methods rely on linear regression**] .pull-left[ .huge[ $$ y_t = \alpha + \beta u_t + \varepsilon_t $$ ] .left10[ $$ `\begin{equation} y\\ u\\ \alpha, \beta\\ \varepsilon\\ \end{equation}` $$ ] .right90.narrow50[ streamflow principal components of MADA grid points regression coefficients white noise ] <!-- right90 --> ] <!-- pull-left --> -- .pull-right.large.steelblue[ <br> * How do we model catchment dynamics? * What insights can we gain with a dynamic model? ] <!-- pull-right --> --- # Linear Dynamical System (LDS) .pull-left[ <img src="data:image/png;base64,#figures/system-graph-0.svg" width="100%"/> ] --- count: false # Linear Dynamical System (LDS) .pull-left[ <img src="data:image/png;base64,#figures/system-graph.svg" width="100%"/> ] --- count: false # Linear Dynamical System (LDS) .pull-left[ <img src="data:image/png;base64,#figures/system-graph.svg" width="100%"/> .math[ $$ `\begin{align} x_{t+1} &= Ax_t + Bu_t + w_t \\ y_t &= Cx_t + Du_t + v_t \\ w_t & \sim \mathcal{N}(0, Q) \\ v_t & \sim \mathcal{N}(0, R) \\ x_1 & \sim \mathcal{N}(\mu_1, V_1) \end{align}` $$ ] Collectively, `$$\theta = (A, B, C, D, Q, R, \mu_1, V_1)$$` ] .pull-right[ <br> <br> .small-left[ $$ `\begin{align} x &\in \mathbb{R}^{p} \\ y &\in \mathbb{R}^{q} \\ u &\in \mathbb{R}^{m} \\ A &\in \mathbb{R}^{p \times p} \\ B &\in \mathbb{R}^{p \times m} \\ C &\in \mathbb{R}^{p \times p} \\ D &\in \mathbb{R}^{p \times p} \\ Q &\in \mathbb{R}^{p \times p} \\ R &\in \mathbb{R}^{p \times q} \\ \end{align}` $$ ] <!-- small-left --> .big-right.narrow60[ system state system output (streamflow) system input (PCs of MADA grid) state transition matrix input-state matrix observation matrix input-observation matrix state-noise covariance observation noise covariance ] ] <!-- pull-right --> --- # Learned with Expectation-Maximization .center[<img src="data:image/png;base64,#figures/em.svg" width="80%"/>] Need to handle missing data → .steelblue[Modified M-step (Lemma 2, page 20)] .steelblue[ R package **`ldsr`** (available on CRAN and at [github.com/ntthung/ldsr](https://github.com/ntthung/ldsr)) ] --- # Catchment state improves flow estimation .panelset[ .panel[.panel-name[Time series] .big-left[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-7-1.png" width="648" style="display: block; margin: auto;" /> ] .small-right[ <br> <br> <br> $$ `\begin{align} x_{t+1} &= Ax_t + Bu_t + w_t \\ y_t &= Cx_t + Du_t + v_t\\ C &> 0 \end{align}` $$ ] ] <!-- panel --> .panel[.panel-name[Skill metrics]
.small-left[ .math[ $$ `\begin{equation} RE = 1 - \frac{\displaystyle\sum_{t \in \mathcal{V}} (y_t - \hat{y}_t)^2}{\displaystyle\sum_{t \in \mathcal{V}} (y_t - \bar{y}_c)^2} \end{equation}` $$ ] .math[ $$ `\begin{equation} CE = 1 - \frac{\displaystyle\sum_{t \in \mathcal{V}} (y_t - \hat{y}_t)^2}{\displaystyle\sum_{t \in \mathcal{V}} (y_t - \bar{y}_v)^2} \end{equation}` $$ ] ] .big-right[ <br> .math[ $$ `\begin{equation} KGE = 1 - \sqrt{(\rho - 1)^2 + \left(\frac{\hat{\mu}}{\mu} - 1\right)^2 + \left(\frac{\hat{\sigma}}{\sigma} - 1\right)^2} \end{equation}` $$ ] ] <!-- big-right --> ] <!-- panel --> ] <!-- panel-set --> --- # LDS reveals a history of regime shifts in the Ping River Basin <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-10-1.png" width="864" style="display: block; margin: auto;" /> --- # Conclusions .large[ .pull-left[ .steelblue[**Methodology**] * Streamflow reconstruction based on linear dynamical system * Learned with modified Expectation-Maximization algorithm ] .pull-right[ .steelblue[**Insights**] * LDS reveals a history of regime shifts in the Ping River * It is important to model catchment dynamics ] ] --- class: inverse .pull-left[ <br> # Chapter 4 # Monsoon Asia: # Eight Centuries of Streamflow History ] .right-fig[ <img src="data:image/png;base64,#figures/monsoon-asia-river-map.png"/> ] --- # MADA v2 is a significant upgrade from v1 .pull-left[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-11-1.png" width="504" /> ] .pull-right[ <br>
] --- # Grid points are selected by hydroclimatic similarity .left-code[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-13-1.png" width="360" /> .small.grey[Knoben, W. J. M., Woods, R. A., & Freer, J. E. (2018). A Quantitative Hydrological Climate Classification Evaluated with Independent Streamflow Data. *Water Resources Research*, 54(7), 5088–5109. DOI: 10.1029/2018WR022913.] ] -- .right-plot[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-15-1.png" width="540" style="display: block; margin: auto;" /> ] --- # Reconstructions are reliable .panelset[ .panel[.panel-name[Good skills at most stations] <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-16-1.png" width="936" style="display: block; margin: auto;" /> ] .panel[.panel-name[Spatial correlations are well-captured] <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-17-1.png" width="648" style="display: block; margin: auto;" /> ] ] --- # Reconstructions capture historical events<br>and reveals spatial coherence of streamflow <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-19-1.png" width="828" /> .mid-right2.narrow60[ (1) Samalas eruption (2) Angkor Drought I (3) Angkor Drought II (4) Kuwae eruption (5) Ming Dynasty Drought (6) Strange Parallels Drought (7) East India Drought (8) Tambora eruption (9) Victorian Great Drought ] --- # Asian rivers share common oceanic teleconnections <img src="data:image/png;base64,#thesis-presentation_files/figure-html/cor1-1.png" width="720" style="display: block; margin: auto;" /> .small.bottom-right[Data for 1855–2012 <br> <br>] --- # Teleconnections changed through time .tall-fig[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/cor3-1.png" width="828" style="display: block; margin: auto;" /> ] --- # Conclusions .pull-left[ .steelblue[**Methodology**] * Climate-informed automated grid point selection ] .pull-right[ .steelblue[**Insights**] * Streamflow in Monsoon Asia is spatially coherent - .darkorange[Inter-basin transfer of water-dependent resources may have inadvertent effects] * Common oceanic teleconnections * Teleconnection changed through time - .darkorange[Opportunity and challenge for climate-informed operations and forecasts] ] --- class: inverse .pull-left[ <br> # Chapter 3 # Multi-Proxy, Multi-Season Streamflow Reconstruction ] .pull-right[ .center[<img src="data:image/png;base64,#figures/tree-ring-small-small.png" width="60%"/>] <img src="data:image/png;base64,#figures/oxygen-isotopes-white.png" width="100%"/> ] .left-footnote[Images: pnghut.com] --- # There have been few attempts on sub-annual reconstructions .panelset[ .panel[.panel-name[Literature] .large[ **Approaches** * Stochastically disaggregate from annual reconstructions (Prairie *et al.*, 2008; Sauchyn and Ilich, 2017) * With regional proxies as additional predictors (Stagge *et al.*, 2018) <span style="color:firebrick">**Limitations**</span> * Assume constant relationship between subannual and annual time series * Do not fully leverage multi-sensory signals of proxies ] <!-- large --> ] <!-- panel --> .panel[.panel-name[Our approach] .center.huge[ <br> Leverage proxy diversity to *directly* reconstruct subannual flow ] <!-- center --> <br> .center.large[ <span style="color:steelblue">e.g., dry season, wet season, and water year reconstructions.</span> ] <!-- large --> ] <!-- panel --> ] <!-- panelset --> --- class: inverse, middle # Challenges .huge[ 1. We need a rich proxy network 2. How do we combine proxies? 3. How do we account for mass balance? ] Total seasonal flow matches the annual flow closely --- # The Southeast Asian Dendrochronology Network .big-left[ <img src="data:image/png;base64,#figures/study-site.png" style="width:90%"/> ] .small-right[ <br> **Tree ring cellulose stable oxygen isotope ratio** `$$r_{sample} = \frac{^{18}\text{O}}{^{16}\text{O}}$$` `$$\delta^{18}\text{O} = \left(\frac{r_{sample}}{r_{standard}} - 1\right) \times 1000$$` ] --- class: center, middle, inverse # Annual mass balance -- .large[Penalty term for mass differences in the regression equation] --- # Mass-balance-adjusted regression .panelset[ .panel[.panel-name[Recap: OLS] Say we have the following regression equation: `$$\mathbf{Y} = \mathbf{X}\beta + \varepsilon$$` In reconstructions, `\(\mathbf{Y}\)` is streamflow and `\(\mathbf{X}\)` is a matrix of proxies. We can form the least squares objective function `$$\min_{\beta} \quad (\mathbf{Y - X}\beta)'(\mathbf{Y - X}\beta)$$` and solve for `\(\beta\)` analytically: .math[ `$$\beta = (\mathbf{X'X})^{-1}\mathbf{X'Y}$$` ] ] <!-- panel --> .panel[.panel-name[Multi-season] .math[ $$ `\begin{align} \mathbf{Y_D} &= \mathbf{X_D\beta_D} + \mathbf{\varepsilon_D} \\ \mathbf{Y_W} &= \mathbf{X_W\beta_W} + \mathbf{\varepsilon_W} \\ \mathbf{Y_Q} &= \mathbf{X_Q\beta_Q} + \mathbf{\varepsilon_Q} \\ \end{align}` $$ ] Let .math[ $$ `\begin{align} \mathbf{Y} = \left[\begin{matrix} \mathbf{Y_D}\\ \mathbf{Y_W}\\ \mathbf{Y_Q} \end{matrix}\right], \quad \mathbf{X} = \left[\begin{matrix} \mathbf{X_D} & & \\ & \mathbf{X_W} & \\ & & \mathbf{X_Q} \end{matrix}\right], \quad \beta = \left[\begin{matrix} \mathbf{\beta_D}\\ \mathbf{\beta_W}\\ \mathbf{\beta_Q} \end{matrix}\right], \quad \varepsilon = \left[\begin{matrix} \mathbf{\varepsilon_D}\\ \mathbf{\varepsilon_W}\\ \mathbf{\varepsilon_Q} \end{matrix}\right] \end{align}` $$ ] We get back the canonical form: .math[ $$ \mathbf{Y} = \mathbf{X}\beta + \varepsilon $$ ] ] <!-- panel --> .panel[.panel-name[Constraint?] It is tempting to impose a mass balance constraint: `$$\mathbf{X_D\beta_D} + \mathbf{X_W\beta_W} = \mathbf{X_Q\beta_Q}$$` .firebrick[**But this is overdetermined.**] .steelblue[**Convert constraint to penalty:**] $$ `\begin{align} \delta &= \mathbf{X_D\beta_D} + \mathbf{X_W\beta_W} - \mathbf{X_Q\beta_Q} \\ &= \mathbf{A}\beta \end{align}` $$ where `\(\mathbf{A} = \left[\begin{matrix} \mathbf{X_D} & \mathbf{X_W} & -\mathbf{X_Q}\end{matrix}\right]\)` .steelblue[**Goal: minimize the squared penalty**] ] <!-- panel --> .panel[.panel-name[Penalized least square] We introduce a penalty term with a weight `\(\lambda\)` .math[ $$ \min_{\beta} \quad J = (\mathbf{Y - X}\beta)'(\mathbf{Y - X}\beta) + \lambda (\mathbf{A}\beta)'\mathbf{A}\beta $$ ] The analytical solution is .math[ `$$\beta = (\mathbf{X'X} + \lambda \mathbf{A'A})^{-1}\mathbf{X'Y}$$` ] .steelblue[R package **`mbr`** [(github.com/ntthung/mbr)](github.com/ntthung/mbr)] ] ] <!-- panelset --> --- class: center, middle, inverse # Proxy combination .large[Find the optimal combinations based on penalized least squares] --- # Optimal proxy combination Represent proxy combination with a binary vector .math[ $$ `\begin{align} \mathbf{p} &= [p_1, p_2, ..., p_K]'\\ & \\ p_i &= \begin{cases} 1 \qquad \text{if the } i^{\text{th}} \text{ proxy is selected} \\ 0 \qquad \text{otherwise} \end{cases} \end{align}` $$ ] <br> Each `\(\mathbf{p}\)` has a penalized least squares value `\(J\)`. We find `\(\mathbf{p}\)` with the smallest `\(J\)`. .math[ $$ \min_\mathbf{p} \quad J(\mathbf{p}) $$ ] This can be solved with *Genetic Algorithm*. --- # The two models produce similar reconstructions... <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-20-1.png" width="1080" /> --- # ...but Model 1 preserves the annual mass balance better <img src="data:image/png;base64,#thesis-presentation_files/figure-html/annual dQ-1.png" width="864" style="display: block; margin: auto;" /> ??? For Model 0, 28% of the time, the mass difference is outside the +- 10% MAF range, while for Model 1, that number is only 13%. For Model 0, the difference can be as large as 640 Mm3, which is 90% of the Irrigation Demand of the Ping River downstream of Bhumibol. --- # Conclusions .large[ .pull-left[ .steelblue[**Methodology**] * Subannual reconstructions * Optimal proxy combinations * Mass balance adjusted regression ] .pull-right[ .steelblue[**Applications and extensions**] * Other climate targets, e.g. rainfall * Tributaries' flows add up to main stream's flow * Probabilistic assessment of water resource systems * Higher resolutions (e.g., monthly) ]] --- class: inverse .small-left[ <br> # Chapter 5 # Probabilistic assessment of water system <br> with monthly reconstructions ] .right-fig2[ <img src="data:image/png;base64,#figures/bhumibol-dam-cropped.png" width="100%"/> <img src="data:image/png;base64,#figures/sirikit-dam-cropped.png" width="100%"/> ] .left-footnote[Images: Royal Irrigation Department] --- # Chao Phraya water system simulation .pull-left[ <img src="data:image/png;base64,#figures/c5-chao-phraya-map.png" width="100%"/> ] .pull-right[ **Workflow** 1. Reconstruct monthly inflow at P.1 and N.1 1. Create bias-corrected reconstructions with quantile mapping 1. Generate three stochastic ensembles: instrumental, reconstruction, bias-corrected reconstruction 1. Convert to inflow 1. Simulate 1. Assess the outputs ] --- # From upstream reconstruction to stochastic inflow **Step 2:** Bias correction with quantile mapping $$ U_{bc} = F_o^{-1}(F_r(U_r)) $$ -- **Step 3:** Generate stochastic ensembles of upstreamflow Vector AutoRegressive Moving Average (VARMA) $$ `\begin{equation} \mathbf{y}_t = \sum_{i=1}^p \phi_p \mathbf{y}_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t \end{equation}` $$ Model order determined with Bayesian Information Criterion: `\(p = 1, q = 1\)`. -- **Step 4:** transform to inflow $$ `\begin{equation} Q^k_{n, m} = a^k_m U^k_{n, m} + b^k_m \end{equation}` $$ --- # Assessment criteria (step 6) .darkorange[**Mean annual hydropwer production**] `$$H^k = \frac{1}{N} \sum_{n=1}^N \left( \sum_{m=1}^{12} \eta \rho g h(S^k_{n,m}) R^k_{n,m}\right)$$` .darkorange[**Mean annual supply level**] $$ `\begin{equation} W = \frac{1}{N}\sum_{n=1}^N \left( \frac{1}{12}\sum_{m=1}^{12} \min \left\{ \frac{r^{Bhumibol}_{n,m} + r^{Sirikit}_{n,m}}{D_m}, 1 \right\} \right) \end{equation}` $$ .darkorange[**Number of spill events**] $$ `\begin{equation} N_s = \sum_{n=1}^N \sum_{m=1}^{12} \mathbb{1}_{\{s_{n,m} > 0\}} \end{equation}` $$ --- # Monthly upstream flow reconstructions .panelset[ .panel[.panel-name[Raw reconstruction] <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-22-1.png" width="936" style="display: block; margin: auto;" /> ] .panel[.panel-name[Bias correction with quantile mapping] <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-23-1.png" width="936" style="display: block; margin: auto;" /> ] ] --- # Reconstruction reveals rich "internal" variability <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-24-1.png" width="576" /> -- .mid-right.firebrick[To bias-correct or not, that is the question.] --- # Three ensembles produce three distributions of<br>system performance .tall-fig2[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-26-1.png" width="648" style="display: block; margin: auto;" /> ] --- # How do we reconcile the three ensembles? -- .large[ * Improve the reconstruction - Non-linear methods, e.g., LDS - Add more proxies (blue light reflectance, wood density, etc.) ] -- .large[ * Better bias correction method ] -- .large[ * Bayesian combination (Patskoski *et al.*, 2015) ] .left-footnote[Patskoski, J., & Sankarasubramanian, A. (2015). Improved reservoir sizing utilizing observed and reconstructed streamflows within a Bayesian combination framework. Water Resources Research, 51(7), 5677–5697. DOI: 10.1002/2014WR016189 ] -- .large.steelblue[**It is important to incorporate paleo data into water system assessment.**] --- # Synthesis .pull-left[ .large.steelblue[ **Some important gaps are addressed** * Catchment dynamics * Monthly reconstructions * Proxy selection methods * Large scale variability in Monsoon Asia ] ] -- .pull-right[ .large[ **But we have more work to do** * Reconciling distributional differences * .darkorange[Climate change and variability in the future] ] ] -- .large.center[Is it time to apply streamflow reconstructions to water management?] -- .large.center[Yes!] -- .large.pull-down-center[Thank you!] --- count: false class: center, middle, inverse # Extra slides --- count: false # Simultaneous Learning-Reconstruction .big-fig[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-27-1.png" width="1152" /> ] .pull-down.large[Need to handle missing data → .steelblue[Modified M-step (Lemma 2, page 20)]] --- count: false # LDS serves as a stochastic streamflow generator <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-28-1.png" width="864" style="display: block; margin: auto;" /> --- # Ensemble point-by-point regression with cross-validation .pull-left[ Thirty models are considered: * .steelblue[Five climate distances $$ d = 0.10, 0.15, 0.20, 0.25, 0.30 $$ ] * Six PCA weights (Cook *et al.*, 2010) $$ z_i = g_i \rho_i^p $$ $$ p = 0, \frac{1}{2}, \frac{2}{3}, 1, \frac{3}{2}, 2 $$ ] -- .pull-right[ Cross-validation: * hold-out 25% * contiguous chunks * repeat 50 times .steelblue[ Selection: * (CE, KGE) nearest to (1, 1) ] ] <br> .center[Need to run on a supercomputer!] --- count: false # Counter example <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-29-1.png" width="1080" /> --- count: false # MBR full reconstruction <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-30-1.png" width="1080" /> --- count: false # Reconstructions reveal intra-annual variability <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-31-1.png" width="1080" /> --- count: false # Storage follows range of variability <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-32-1.png" width="1008" /> --- count: false # Hypothetical reservoir operating rules (steps 5 and 6) .pull-left[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-33-1.png" width="576" /> ] -- .pull-right[ <img src="data:image/png;base64,#thesis-presentation_files/figure-html/unnamed-chunk-34-1.png" width="504" /> ]