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Urban drainage systems are critical to cities as they handle large volumes of runoff
generated during rainfall events, thereby reducing the risks of floods. Current design
practices for drainage systems relies on design storms – critical rainfall events of given
intensity and duration corresponding to a given return period. However, rainfall con-
ditions can be varied, in terms of intensity, duration, and profiles (i.e., the time dis-
tribution of rainfall). Systems optimized with respect to design storms are expected
to perform well under similar and less intense rainfall conditions, but this may not
always be guaranteed. Designing robust drainage systems – solutions that perform
consistently under a broad range of rainfall events – is therefore a challenging task. In
this thesis, we address this task by first identifying the flaws of existing design prac-
tices and then proposing a novel framework that tackles these flaws, thus supporting
the design of optimal, and robust, drainage systems.

In the first part of the thesis, we inspect existing design practices and identify when
and why design storms may fail to produce robust solutions. To do this, we develop
a computational framework that evaluates the robustness of drainage systems opti-
mized for a design storm. The framework consists of four building blocks. First, we
use sensitivity analysis to identify the most important decision variables [e.g., pipe
expansions and low impact development (LID)], thereby reducing the complexity of
the design problem. Second, we solve the problem using a multi-objective simulation-
optimization scheme, which yields a set of Pareto-efficient solutions optimizing various
measures of performance. Following current practice in drainage system design, the
first two steps rely on a design storm. Third, we simulate each solution under stochas-
tic rainfall events characterized by different duration, intensity, and profile, and finally
evaluate their robustness.The application of this framework to the Nhieu Loc-Thi Nghe
basin (Ho Chi Minh City, Vietnam) reveals that that none of the Pareto-efficient solu-
tions are robust across all rainfall events. In particular, we find that the optimized
solutions underperform when rainfall intensities, duration, and profiles deviate from
those of the design storms. The first part of this thesis thus elucidates the need to in-
clude stochastic rainfall events throughout the design process so as to obtain robust
drainage solutions.

In the next part of the thesis, we contribute a framework that builds on stochastic
rainfall events –instead of design storms– for the entire design process. In particular,
the proposed framework begins with the stochastic rainfall generation step and con-
siders multiple rainfall events, representing a wide range of intensity, duration, and
profiles, in both sensitivity analysis and optimization steps. To overcome the increase
in computational requirements, we use emulation modelling techniques to replace the
urban hydraulic simulator in the optimization step. We compare our proposed frame-
work to the design storm based method and demonstrate that the proposed framework
is more effective in finding drainage systems that are robust against a broad range of
rainfall conditions. We also show that it is more efficient in terms of computational
power required, solving the design problem 12 times (approximately 600 hours) faster
than the conventional method.
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Chapter 1

Introduction

1.1 An overview of urban drainage design - history, practices,
challenges, and opportunities

Urban settlements throughout the globe are experiencing growing flood risks, owing
to uncontrolled developments, population growth, sea level rise, and climate-driven
changes in rainfall patterns. To prevent and minimize flood damages during extreme
rainfall events, robust drainage systems are paramount (Butler and Davies, 2000; Bach
et al., 2014). These infrastructures consist of drainage networks and, in some cases,
low impact development (LID). The former represent a conventional and efficient way
to convey large volumes of stormwater, while the latter—also known as sustainable
drainage systems (SuDS), water sensitive urban design (WSUD), and green infrastruc-
ture (GI) (Fletcher et al., 2015)—manages stormwater by promoting runoff infiltration
and retention (Ahiablame, Engel, and Chaubey, 2012). Some common examples of LID
include green roofs, pervious pavements, and rainwater harvesting.

The design of drainage systems has evolved during the past two centuries. Before
the 1800s, drainage systems were generally developed through uncoordinated efforts
rather than formal engineering design (Burian et al., 1999). This changed in 1843, when
the first comprehensively designed sewerage system was installed in Hamburg (Butler
and Davies, 2000). In the following decades, the success was emulated in other ma-
jor cities, such as London, Paris, and Chicago (Cain, 1972). It was also in this period
that the design of drainage systems started to account for urban hydrology. The ini-
tial methods in mid-1800s used empirical equations or look-up tables (based on sewer
slope and basin area) to calculate runoff and size the sewer pipes. Rainfall variables
were only first explicitly considered when Mulvaney, 1851 developed the Rational
method, which linked peak flow to rainfall intensity. Rainfall intensity could finally be
associated to rainfall frequency in the 1930s, when intensity-duration-frequency (IDF)
curves were derived from rainfall records (Adams and Howard, 1986). The IDF curves
estimate the frequency of occurrence (otherwise known as the return period) of rainfall
events with given intensity and duration; conversely, given a return period, the IDF
curve estimates the corresponding intensity of rainfall events of a specified duration
(Sun et al., 2019). With IDF curves, one can derive the so-called design storms – criti-
cal rainfall events used to test the endurance of hydraulic structures. IDF curves thus
marked the beginnings of ‘design storms’ in urban drainage design.
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Design storms remain in use today, although the approaches for modelling and de-
signing urban drainage systems have advanced significantly. The first advancement
was the introduction of optimization techniques in the 1960s (Guo, Walters, and Savic,
2008). Prior to this time, design only ensured that drainage systems could satisfy
flow constraints, while optimization allowed some objectives—typically the cost—to
be minimized, thus generating low-cost solutions that satisfied those constraints. Lin-
ear programming, nonlinear programming, and dynamic programming were among
the early optimization techniques (Dajani and Hasit, 1974; Mays and Yen, 1975; Mays
and Wenzel Jr, 1976). They usually solved for pipe sizes and slopes to ensure that
pipes could carry peak flow capacity as specified by design storms, which were uni-
formly distributed over time. This implies that these optimization techniques neglected
the timing of peak flows, an assumption that allowed the problem formulation to
take a structure that optimization techniques could handle. Another major advance-
ment was the development of process-based models, such as the Storm Water Man-
agement Model (SWMM) (Rossman, 2015), which enabled practitioners to use more
sophisticated runoff hydrographs and storm hyetographs. These models can be eas-
ily coupled with evolutionary algorithms—or other metaheuristics—to aid drainage
systems design (e.g., Wang et al., 2018). The key advantage here is that the simulation-
optimization approach allows accounting for some physical characteristics—such as
design storm profiles (i.e., how the rainfall depth is distributed over time) or the in-
stantaneous flow within drainage networks—that cannot be easily modelled with tra-
ditional optimization techniques. Many studies have used the simulation-optimization
approach to optimize pipe sizes (Yu et al., 2017; Ogidan and Giacomoni, 2017), storage
capacities (Maharjan et al., 2009), and operations of pumps, weirs, and orifices (Be-
raud et al., 2010; Le Quiniou, Mandel, and Monier, 2014; Rathnayake, 2015). Yet, the
approach is rather computationally intensive (Maier et al., 2014), a feature that limits
the design process to a few design storms with specific rainfall duration, intensity, and
profile.

Since design storms remain an essential component of the design process in both
academia and engineering practice (e.g., Code of Practice on Surface Water Drainage 2011;
Urban Stormwater Management Manual for Malaysia 2012; Kellagher, 2013; Drainage De-
sign Guide 2018; Stormwater Drainage Manual 2018), it is important to understand whether
urban drainage solutions obtained using design storms are robust against different
rainfall conditions. A robust system is expected to perform well under a broad range of
plausible conditions that could deviate from the conditions for which the system was
designed (Herman et al., 2015; McPhail et al., 2018). In the context of drainage design,
we would thus expect a robust solution to maintain the same performance (e.g., over-
flow reduction) for rainfall events that occur as frequently as the design storm, and
possibly outperform for smaller and more frequent events. It should also be consid-
ered that the design of drainage systems is not necessarily aimed at eliminating floods
during a design storm, since there are instances in which a drainage system can only
partially reduce the flood extent—a common problem in cities with limited resources.
In such case, can its robustness be ensured? This question gains further prominence if
one considers that LIDs—which are becoming increasingly popular—are particularly
sensitive to rainfall conditions (c.f., Damodaram and Zechman, 2013; Schmitter et al.,
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2016).

Till date, only a handful of studies have dropped the concept of design storms
in favour of a stochastic evaluation of system performance. For example, Yazdi and
Neyshabouri, 2014 optimized the height of flood control detention dams by minimiz-
ing the expected annual flood damage, which was evaluated using random samples
of annual maximum rainfall. Yazdi, Lee, and Kim, 2014 optimized the pipe sizes and
number of pumps in a drainage system through a risk-based measure of performance,
which was estimated by simulating the behaviour of the drainage system on random
samples of rainfall events characterized by different depths and duration. Importantly,
the authors found that solutions obtained with the risk-based approach outperformed
the ones relying on design storms. While the aforementioned represent successful at-
tempts at designing solutions that do not build on design storms, it may be worthwhile
to first evaluate the robustness of drainage systems designed using design storms and
understand when and why design storms may fail to produce robust designs.

If design storms are shown to be inadequate, it follows that we could possibly in-
clude stochastic rainfall events in the optimization process such that the urban drainage
solutions are robust against a wide range of rainfall conditions. However, this poses
a new challenge, that is the high computational cost associated with the greater num-
ber of simulations needed – the reason why only a few design storms are usually used
for optimization in the first place. Fortunately, surrogate modelling is becoming a fea-
sible and popular alternative to simulation models (Razavi, Tolson, and Burn, 2012;
Benner, Gugercin, and Willcox, 2015). There are two broad families of surrogate mod-
els: one family consists of empirically data-driven models that approximate response
of original simulation model by interpolation or regression; the other family consists
of simplified physically-based models of the original simulation models. Although
surrogate models may sometimes compromise on model accuracy, they are computa-
tionally cheaper and faster alternatives to simulation models. When used in settings
which require iterated use of simulation models, such as optimization, much computa-
tional time could be saved. This make surrogate-based optimization an attractive op-
tion for the design of robust urban drainage system. While surrogate models for urban
drainage simulator have been explored (Machac, Reichert, and Albert, 2016; Carbajal
et al., 2017; Moreno-Rodenas et al., 2018) and application of surrogates in optimization
for water resources problems are getting more popular (Razavi, Tolson, and Burn, 2012;
Castelletti et al., 2012a), we have yet to find out the feasibility of using surrogates in op-
timization for urban drainage, its potential advantages and possible flaws. This opens
up opportunities to design more effective urban drainage without only relying on de-
sign storm: the resulting optimal designs of pipe network and LIDs could possibly be
more robust against a wide range of rainfall conditions.
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1.2 Contributions of the thesis

In this thesis, we offer a new perspective on the design of urban drainage systems, one
that does not necessarily have to rely on design storm and will effectively contribute to
the broader goal of designing robust urban drainage systems. To do so, we first exam-
ine the current practice in drainage system design, that is one that uses design storms,
and investigate its effectiveness in producing robust solutions. Next, we propose a new
method of designing robust urban drainage systems, one that uses stochastic rainfall
events within a surrogate-based optimization framework. Lastly, we test the scalability
of this framework by applying it to a higher dimensional problem. For each step, we
apply our work to a real-world case study to understand the practicality of our design
framework.

In Chapter 2, we first optimize urban drainage systems using design storms and
evaluate the robustness of solutions to find out when and why design storms may
fail to produce robust designs. More specifically, we investigate if solutions optimized
for design storm are robust against other rainfall events with intensity, duration, and
profile that deviates from the design storm. We also determine which component of
urban drainage (i.e., LID or pipe network) contributes more to the effectiveness and
robustness of urban drainage systems. Lastly, we identify the rainfall characteristics
that affect robustness of the solutions.

In Chapter 3, we test out a new approach to urban drainage design. Instead of
using the design storm, we include stochastic rainfall events during optimization and
seek optimal solutions based on objectives that involve measures of robustness. This al-
lows us to find out if including stochastic rainfall events during the optimization phase
can result in solutions that are robust against various rainfall conditions. However,
doing so increases computational demand. To overcome this, we construct a Gaus-
sian Process (GP) emulator to approximate the simulation model. We first identify
the tradeoff between accuracy and complexity of the GP emulator used to emulate
overflow of the urban drainage simulator. Following that, we use the emulator in a
surrogate-assisted optimization framework to investigate its feasibility in obtaining ro-
bust solutions within a shorter time.

In Chapter 4, we scale up the framework developed in Chapter 3 by applying it to
a higher dimensional optimization problem (i.e., greater number of decision variables
for the urban drainage design). By doing so, we determine how the emulator accuracy
changes with problems of increasing complexity. We also find out if surrogate-assisted
optimization can still remain an attractive option to produce robust urban drainage
systems.

Finally, we conclude the thesis in Chapter 5 with a summary of our results and a
discussion on the future prospects on urban drainage systems.
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Chapter 2

Optimizing drainage system using
design storms: are solutions robust?

2.1 Introduction

The common practice to urban drainage system design is to rely on design storms;
however such a method may not guarantee that solutions are robust against rainfall
conditions that deviate from the design storm. While there have been successful at-
tempts to design solutions that do not rely on design storms (Yazdi and Neyshabouri,
2014; Yazdi, Lee, and Kim, 2014), it is worthwhile to first evaluate the robustness of
drainage systems designed using design storms and understand when and why de-
sign storms may fail to produce robust designs. In this chapter, we aim to improve our
understanding of the potential flaws behind the adoption of design storms in drainage
systems design. In particular, we aim to answer the following questions: 1) are all
solutions optimized for a design storm robust to other rainfall events?; 2) which com-
ponents of an urban drainage system contribute more to robustness?; and 3) what are
the rainfall characteristics (i.e., duration, intensity, and profile) that affect the robust-
ness of a drainage system?

To this goal, we contribute a novel computational framework that could be read-
ily applied to any drainage system. The framework consists of four building blocks,
namely sensitivity analysis, simulation-optimization, stochastic generation of rainfall
events, and robustness analysis. Sensitivity analysis first identifies the drainage compo-
nents that contribute most to overflow reduction; then, simulation-optimization searches
for the Pareto-efficient configuration of these components. These two steps rely solely
on the design storm, as in current practices in urban drainage design. We then simulate
the Pareto-efficient solutions under stochastic rainfall events (characterized by differ-
ent duration, intensity, and profile), and evaluate their robustness across such broad
range of rainfall conditions. Using the Nhieu Loc-Thi Nghe basin (Ho Chi Minh City,
Vietnam) as case study, we show that the framework can be used not only to identify
the most robust solutions, but also to determine how drainage components and rainfall
variables influence robustness.
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2.2 Case study

2.2.1 Study site: Nhieu Loc-Thi Nghe Canal and Basin

The Nhieu Loc-Thi Nghe (NL-TN) basin is located in the central area of Ho Chi Minh
City, Vietnam (Fig. 2.1). Occupying an area of 33 km2 and stretching across seven city
districts, the basin supports a population of 1.2 million people, roughly a fifth of the
city’s total population. Land use is dominated by residential developments (49.3%
of the total area) and commercial, public, and industrial users. Domestic wastewater
and stormwater are collected in the NL-TN Canal and eventually discharged into the
Saigon River, located in the southeastern part of the city. The NL-TN Canal was heavily
polluted when informal settlements developed along its banks in the 1960s. Since 1995,
the city has cleaned up the canal, relocated informal settlements, and improved the
drainage system (Wust, Bolay, and Du, 2002). However, even with these measures in
place, flood is still a common occurrence (Ho Chi Minh City seriously flooded due to storm
Usagi; Comprehensive plan needed to prevent flooding in HCMC). Furthermore, continued
sea level rise and increasing rainfall intensity could drive flood risks beyond current
levels by mid-century (Lempert et al., 2013).

In our study, the NL-TN basin is simulated with EPA SWMM 5.1 (Rossman, 2015)
and represented by 228 sub-catchments and 333 conduits (of which 25 represent the
NL-TN canal (Fig. 2.1)). The model calibration is reported in Ho et al., 2015, who com-
pared observed and simulated water depth along the NL-TN canal for a 2-year design
storm that produced 90.2 mm of rainfall over a period of 3 hours. In their experiment,
Ho et al., 2015 defined the downstream boundary conditions through a typical tidal
curve at Phu An station, located at the outlet of the NL-TN canal. In this curve, the
tide peaks at 1.48 m at the hour that directly follows the rainfall peak, thereby worsen-
ing the consequences of the rainfall event. For this event, SWMM reported reasonable
accuracy for both water depth and flood locations.

2.2.2 Rainfall data

Rainfall data are obtained from the Southern Regional Hydrometeorological Center of
Vietnam, and are represented by a 10-year time series (with hourly resolution), which
was recorded at the Tan Son Hoa meteorological station (Fig. 2.1) from 1 Jan 2008 to 31
December 2017. The average annual precipitation recorded at Tan Son Hoa is 2,075.5
mm, with the monsoon season (May to October) accounting for nearly 80% of the total
rainfall.

To proceed with our analysis, we extract rainfall events from the time series. In
particular, a rainfall event is defined as a period of time with at least 0.2 mm of rain
and separated from preceding and succeeding rainfall events by at least 4 hours. Us-
ing this definition, 1,720 rain events were identified from the 10-year rainfall time se-
ries. Table 2.1 shows the event-based statistics: the mean duration of rainfall events
is 3.4 hours; total rainfall depth can vary widely, ranging from 0.2 mm to 184.8 mm
(although 95% of the events have a volume lower than 48.1 mm). The most extreme
rainfall events in these 10 years have maximum hourly intensity of 116.7 mm/hr and
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Nhieu Loc-Thi Nghe Basin
Tan Son Hoa Rain Gauge
Ho Chi Minh City
Vietnam

Legend
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FIGURE 2.1: Map (left) and SWMM representation (right) of the Nhieu
Loc-Thi Nghe Canal and Basin. In the SWMM representation obtained
from Ho et al., 2015, the NL-TN canal is highlighted in red and the
drainage network is highlighted in blue. The sub-catchments and nodes
in the drainage network are represented by squares and circles respec-

tively.

TABLE 2.1: Event-based statistics of the rainfall events obtained from the
10-year time series. P5 and P95 correspond to the 5th and 95th percentile.

Parameter Min Max Mean Median P5 P95

Event duration (h) 1 30 4.0 3 1 11
Rain duration (h) 1 26 3.4 2 1 9
Dry weather period (h) 4 2903 46.7 21 4.9 145.1
Total rain (mm) 0.2 184.8 12.1 4.3 0.2 48.1
Max rain intensity (mm/h) 0.1 116.7 8.2 3.1 0.2 32.4
Average rain intensity (mm/h) 0.04 41.6 3.2 1.4 0.2 12.5

an average intensity of 41.6 mm/hr. Note that the 3-hour, 2-year return period design
storm obtained from Ho et al., 2015 has a rainfall depth of 90.2 mm and a maximum
hourly intensity of 67.4 mm/hr.

2.3 Computational framework

The computational framework developed for this study consists of four steps, illus-
trated in Fig. 2.2. We begin with a sensitivity analysis (Step 1), which is aimed at
determining which decision variables (e.g., pipe expansions, implementation of LIDs)
should be considered in the design process. Such step is not strictly necessary, but
it can help reduce the dimensionality of the design problem, especially when dealing
with large drainage systems (such as the one considered here). The selected decision
variables are then used to formulate and solve a simulation-optimization problem (Step
2), where SWMM is coupled with a multi-objective evolutionary algorithm (MOEA) to
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3. Statistical analysis and 
simulations of rainfall events

1. Sensitivity
analysis

2. Simulation-optimization

4. Robustness
analysis 

Rainfall DataSet of all 
decision variables

Reduced set
of decision

variable

Pareto-efficient solutions

Design
storm

Rainfall events obtained
from 10 years rainfall series

Model joint distribution
of rainfall intensity and
duration using copula

Model storm profile
by Huff's method

Likelihood of 
rainfall events 

Simulations under
different rainfall

conditions

Solutions' performance under
different rainfall conditions

Robust solutions

Design
storm

FIGURE 2.2: Flowchart of the computational framework, consisting of
4 main steps: 1) sensitivity analysis to select the decision variables for
the optimization problem; 2) simulation-optimization to obtain Pareto-
efficient solutions; 3) statistical analysis and simulation of rainfall events
to simulate the Pareto-efficient solutions under multiple stochastic rain-
fall replicates; 4) robustness analysis to evaluate the capability of the so-

lutions to attain a minimum level of performance.

find a set of Pareto-efficient solutions, or designs, that minimize the investment costs
while maximizing the reduction in both overflow volume and flooded nodes during
the design storm. Note that, following the current practice in drainage system design,
both sensitivity analysis and simulation-optimization rely on a design storm. The so-
lutions so identified are simulated for multiple stochastic rainfall replicates (Step 3),
whose duration, intensity, and profile are modeled with the aid of copula functions
and Huff’s method. The results from the simulation are finally used in the robustness
analysis (Step 4), where we determine, for each solution, the capability of attaining the
performance it is designed for. This approach is similar to that of Kasprzyk et al., 2013,
in which a rich set of alternative solutions is first generated using a MOEA and then
their performance assessed under conditions that deviate from those used to evaluate
optimality.
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2.3.1 Sensitivity analysis

The NL-TN basin is a large watershed, so there are many infrastructural interventions
that could be considered to reduce flood-related damages. In particular, the initial de-
cision space includes expanding any of the 308 pipes in the drainage system and, as
suggested by Ho et al., 2015, implementing 4 types of LID within 3 of the 228 sub-
catchments (these are the only sub-catchments for which detailed information on the
land use is available). The LIDs considered are rainwater harvesting, green roofs, ur-
ban green spaces, and pervious pavements. Together, pipe expansions and LIDs yield
a total of 320 decision variables; a number that would make a simulation-optimization
problem intractable. That is because a large number of decision variables would require
an extensive number of simulations with SWMM to explore effectively the decision
space. Furthermore, one should consider that not all decision variables would neces-
sarily contribute to the reduction of overflow volume (or number of flooded nodes).
We thus resort to sensitivity analysis (SA) to identify the decision variables that are
potentially most important at reducing overflow for the 2-year, 3-hour design storm.
Two SA methods are used: the elementary effect test (EET) and the extended Fourier
amplitude sensitivity test (eFAST).

EET is first adopted as a screening tool to discard non-influential variables before
using eFAST, which is a more accurate but time consuming SA (Pianosi et al., 2016).
The output considered here is the reduction in total overflow volume, while the input
factors are the diameters of 308 pipes and area of the 12 LIDs. (Note that in this section
we use the term ‘input factor’, generally adopted in the SA literature, instead of ‘de-
cision variable’.) EET perturbs the input factors of the simulation model one at a time
from multiple points within the input space. It then measures the global sensitivity by
taking the mean of the elementary effects, namely the local derivatives of the output
with respect to an input. A total of r(M+1) evaluations is needed, whereM is the num-
ber of factors and r the number of elementary effects. In this instance, M = 320 and
r = 100—the value of r is chosen by checking that the convergence of the sensitivity
estimates is reached (Pianosi et al., 2016). The set of factors that have a positive mean
elementary effect on total overflow reduction (78 pipes and 8 LIDs) is then selected for
the subsequent SA step.

eFAST (Saltelli, Tarantola, and Chan, 1999) is carried out to further reduce the num-
ber of input factors. This variance-based SA assesses the sensitivity of an input factor
by determining its contribution to the output variance. For each input factor, eFAST
calculates the total-order index, which accounts for the direct effect of the input on the
output (in our case, the total overflow reduction) as well as its interactions with the
other input factors. This is especially important in our application since interactions
amongst pipes (and LIDs) could amplify the individual effects of expanding a single
pipe. The only eFAST parameter to set is the number of samples per input factor—equal
to 514, as recommended in Saltelli, Tarantola, and Chan, 1999. This number is lower
than other variance-based methods due to a tailored sampling strategy employed by
eFAST. The factors identified by eFAST are ranked according to their value of the total-
order index, yielding a total of 20 input factors (or decision variables), 12 of which are
pipe variables and 8 are LID variables. Table 2.2 and 2.3 list the properties of these 20
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TABLE 2.2: Description of the pipe variables selected from sensitivity analysis

Decision
variable, xj

Pipe no. Shape Length, lj (m) Size, dj (m) Maximum
size (m)

x1 1 Rectangular closed 546 2.5 x 2.5 4
x2 2 Circular 360 1.5 2.5
x3 3 Circular 510 1.2 2.2
x4 4 Circular 180 1 2
x5 5 Rectangular closed 840 1.5 x 2.8 4
x6 6 Rectangular closed 600 1.2 x 2 4
x7 7 Rectangular closed 727 2 x 4 4
x8 8 Rectangular closed 540 0.8 x 5 4
x9 9 Rectangular closed 551 1.2 x 5 4
x10 10 Rectangular open 200 3.2 x 10 4.2
x11 11 Rectangular open 610 2.7 x 10 4
x12 12 Rectangular closed 900 1.8 x 4 4

Maximum size refers to the maximum diameter for circular pipes and maximum
depth for rectangular pipes. It corresponds to the maximum size of an existing pipe
of the same shape or 1 m larger than the original size, whichever is bigger. Width of
rectangular pipes are unchanged during optimization.

decision variables. For more details about the SA results, please refer to Appendix A.

2.3.2 Simulation-optimization

With the reduced set of decision variables selected through the SA, the next step is to
identify the optimal solutions with the aid of a simulation-optimization scheme. In
our application, we couple SWMM (forced with the same design storm used in the SA)
with NSGA-II (Deb et al., 2002), which has been widely used to solve various water re-
sources problems (Nicklow et al., 2009), including the optimization of urban drainage
systems (Beraud et al., 2010; Damodaram and Zechman, 2013; Yazdi and Neyshabouri,
2014; Le Quiniou, Mandel, and Monier, 2014; Rathnayake, 2015; Di Matteo, Dandy,
and Maier, 2017). Although many advanced Multi-Objective Evolutionary Algorithms
(MOEAs) have been recently released (see Reed et al., 2013), we note that NSGA-II
performs comparatively well against more recent algorithms when a limited computa-
tional budget is available (Wang et al., 2014; Zheng et al., 2016). We also note that the
overall goal of our study is to investigate the relation between design storms and the
robustness of drainage systems, so the choice of the ‘best’ MOEA is not the main focus.

The decision variables considered here are the pipe diameters and the number of
LID units. Diameters are only allowed to take discrete values, which correspond to
existing pipe sizes in the network. The LIDs are assumed to have a fixed unit area, so
the overall area of LIDs implemented in the sub-catchments is modified by changing
the number of units simulated by SWMM. In particular, green roofs have an area of 60
m2 per unit, while urban green spaces and pervious pavements an area of 100 m2 per



Chapter 2. Optimizing drainage system using design storms: are solutions robust? 11

TABLE 2.3: Description of the LID variables selected from sensitivity analysis

Decision
variable, xj

LID
Sub-catchment properties Maximum

no. of unitsSub-catchment no. Area (ha) Impervious %

x13 Green roofs
1 31.45 70

1102
x14 Pervious pavements 900
x15 RWH system 1102
x16 RWH system 2 12.55 70 406
x17 Green roofs

3 102 70

2726
x18 Pervious pavements 1400
x19 Urban green spaces 4000
x20 RWH system 2726

RWH = rainwater harvesting

unit, as modelled in Ho et al., 2015. Rainwater harvesting is represented by a 1 m2 rain
barrel per unit. The maximum number of LID units depends on the number of house-
holds and existing roads/parks in the sub-catchments (Ho et al., 2015). All other LIDs
settings in SWMM, such as soil thickness, antecedent soil moisture, or porosity, are not
modified during the optimization process (further details about the decision variables
are reported in Table 2.2 and 2.3).

We consider three objectives, namely the reduction in total overflow volume (JOverflow),
the reduction in the number of flooded nodes (JNode), which are to be maximized, and
the capital cost (JCost), which is to be minimized. JOverflow accounts for the flood ex-
tent (since SWMM does not simulate 2D surface inundation), and is defined as follows:

JOverflow = 1−
∑T

t=1

∑N
i=1 fi,t(x)

Fbaseline
, (2.1)

where x is the vector of decision variables, T the total number of time instances (5
min intervals) in the design storm, N the total number of nodes in the drainage net-
work, fi,t(·) the overflow volume in the i-th node at time t (calculated by SWMM), and
Fbaseline is the total overflow volume during the design storm for the existing drainage
system which can be evaluated using the formula in the numerator by substituting x
with the zero vector. The second objective, JNode, accounts for the spatial distribution
of a flood event:

JNode = 1−

∑N
i=1 1{

∑T
t=1 fi,t(x)>0}

Nbaseline
, (2.2)

where 1{∑T
t=1 fi,t(x)>0} is an indicator function that takes value equal to 1 if the overflow

volume fi,t(·) in the i-th node takes a positive value in any of the T time instances
(and 0 otherwise), and Nbaseline is the total number of flooded nodes during the design
storm for the existing drainage system which can be evaluated using the formula in
the numerator by substituting x with the zero vector. Finally, the capital cost JCost is
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defined as:

JCost =

MP∑
j=1

α× xj × lj × 1{xj>dj} +

ML∑
k=1

βk × ak × xMP+k , (2.3)

where MP and ML are the total number of pipe and LID decision variables, respec-
tively, α the cost of a pipe (in USD) per unit length and unit diameter ($0.8 /mm di-
ameter / m length here, independent of the depth and pipe material, but inclusive of
excavation cost associated with changing a pipe, estimated from USEPA, 1999), lj and
dj the length and original diameter of pipe j (original depth if pipe j is rectangular), βk
the cost (in USD) per unit area of LID k ($100, $25, $100, $75 per m2 of green roof, per-
vious pavement, urban green spaces and rainwater harvesting respectively, estimated
from Sample, 2013), ak the area of a single unit of LID k, and 1{xj>dj} an indicator func-
tion that takes value equal to 1 if the j-th pipe is expanded (and 0 otherwise).

The goal of the multi-objective optimization problem is to find the set of non-dominated
solutions x∗ that minimizes the vector J(x), namely:

x∗ = arg min
x

J(x) , (2.4)

where

x = (x1, ..., xMP
, xMP+1, ..., xMP+ML

) , (2.5)

and

J(x) =

−JOverflow(x)
−JNode(x)
JCost(x)

 . (2.6)

The problem does not have additional constraints besides the upper and lower
bounds on the decision variables (specified in Table 2.2 and 2.3) and the hydraulic con-
straints that SWMM handles.

As mentioned above, all solutions identified by NSGA-II are simulated by SWMM
using the 2-year, 3-hour design storm applied uniformly across the catchment. As for
NSGA-II, the distribution indices for crossover and for mutation are 15 and 20, re-
spectively, while the probabilities of crossover and mutation are 0.9 and 0.1 (a setup
similar to the one adopted by Di Matteo, Dandy, and Maier, 2017). Since the number
of function evaluations (determined, in this case, by the number of generations and
population size) can largely influence the results (Wang et al., 2018), we carry out a
preliminary analysis aimed at determining the number of function evaluations (50,000)
that ensures convergence of the Pareto front (please refer to Appendix B for additional
details). Each run has a population size of 200 and is terminated after 250 generations.
The optimization problem is solved with 10 different random seeds to account for the
variability of the stochastic search process and to ensure a wider Pareto front. The final
set of Pareto-efficient solutions thus corresponds to the set of Pareto-efficient solutions
identified across all 10 seeds. All experiments were performed on a Dual Intel Xeon
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CPU E5-2630 v3 @ 2.40 GHz with 32 GB RAM running Microsoft Windows 8.1. With
this setup, the simulation-optimization experiment took a total of 720 computational
hours.

2.3.3 Rainfall analysis

To generate the stochastic rainfall events used in the robustness analysis, it is necessary
to model the duration, intensity, and profile (or time distribution) of the events at Tan
Son Hoa station. We start with duration and intensity, which are dependent on each
other (Goel et al., 2000). To estimate the univariate distribution of rainfall duration and
intensity, we consider four probability distributions commonly used in hydrology to
fit rainfall variables. They are the normal, lognormal, exponential, and gamma distri-
bution. The best distribution is selected based on likelihood maximization and visual
inspection of distribution fit. Rainfall duration (in hours) is fitted to a lognormal distri-
bution (mean = 0.961, standard deviation = 0.709) (Fig. 2.3a) and rainfall intensity (in
mm/hour) is fitted to a gamma distribution (shape = 0.746, rate = 0.217) (Fig. 2.3b).

Duration and intensity of rainfall events are correlated. Hence, in addition to mod-
eling the marginal distribution of rainfall duration and intensity, copula functions are
used to model the joint probability distribution of these two variables (Genest and
Favre, 2007; Salvadori and De Michele, 2007). The advantage given by a copula func-
tion is that it can capture the dependence structure of two random variables indepen-
dently of the marginal distributions. This is important, since many variables in hydrol-
ogy are not modelled using the same type of probability distribution.

The mathematical definition of copulas is as follows. Consider the random vec-
tor (X1, ..., Xp) with continuous marginals F1(x1), ..., Fp(xp). By applying probability
integral transform, we obtain the random vector:

(U1, ..., Up) = (F1(X1), ..., Fp(Xp)), (2.7)

which has standard uniform marginals. The copula of (X1, ..., Xp) is then the joint
cumulative distribution function of (U1, ..., Up), namely:

C(u1, ..., up) = Pr(U1 ≤ u1, ..., Up ≤ up). (2.8)

Six copula families – Gaussian, t, Clayton, Gumbel, Frank, and Joe – are considered
to model the dependence structure between rainfall duration and intensity. Clayton,
Gumbel, Frank, and Joe copulas belong to a class of copulas called Archimedean cop-
ulas, which are popular, since they admit an analytical formula (unlike the Gaussian
and t-copula) and only require one parameter to govern the strength of dependence
in arbitrarily high dimensions. The bivariate Archimedean copula functions are given
in Table 2.4. As the Gaussian and t-copula do not have a closed form, the reader is
referred to Nadarajah, Afuecheta, and Chan, 2018 for more details.

We select the Frank copula (α = 1.40) based on likelihood maximization to model the
joint probability distribution of intensity and duration. The Frank copula is a symmet-
ric Archimedean copula (in contrast with the asymmetric Clayton and Gumbel copulas,



Chapter 2. Optimizing drainage system using design storms: are solutions robust? 14

Empirical and theoretical dens.

Data

D
en

si
ty

0 5 10 15 20 25

0.
00

0.
10

0.
20

0 5 10 15 20 25 30

0
5

10
20

 Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

0 5 10 15 20 25

0.
0

0.
4

0.
8

Empirical and theoretical CDFs

Data

C
D

F

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

(A)

Empirical and theoretical dens.

Data

D
en

si
ty

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0 5 10 15 20 25 30 35

0
10

20
30

40

 Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

0 10 20 30 40

0.
0

0.
4

0.
8

Empirical and theoretical CDFs

Data

C
D

F

0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

(B)

FIGURE 2.3: Density, CDF, Q-Q, and P-P plot for a) empirical distribu-
tion of rainfall duration with fitted lognormal distribution, and b) em-
pirical distribution of rainfall intensity with fitted gamma distribution.

TABLE 2.4: Bivariate Archimedean Copulas

Family Bivariate Copula C(u1, u2) Parameter α

Clayton (u−α1 + u−α2 − 1)−1/α α > 0

Gumbel exp{−[(− lnu1)α + (− lnu2)α]1/α} α ≥ 1

Frank − 1
α ln(1 + (e−αu1−1)(e−αu2−1)

e−α−1 ) α 6= 0

Joe 1− [(1− u1)α + (1− u2)α − (1− u1)α(1− u2)α]1/α α ≥ 1

which exhibit greater dependence in the negative tail and positive tail, respectively),
which means that the modelled dependence between the rainfall variables does not
change with increasing duration or intensity. Random samples of rainfall duration and
intensity generated from the Frank copula function gives a Spearman’s correlation of
0.213, which is similar to the observed values of 0.235. Fig. 2.4 shows the 1,720 ob-
served rainfall events together with the 4,000 rainfall events randomly generated using
the Frank copula and the univariate distributions for intensity and duration.

To model the profile of rainfall events, we use the Huff’s method (Huff, 1990), which
has found successful application in previous studies on urban drainage (Yazdi, Lee,
and Kim, 2014; Yu et al., 2017). To derive a curve that describes the cumulative frac-
tion of storm rainfall as a function of time, the method follows three steps. First, it
groups rainfall events into 1st, 2nd, 3rd, and 4th quartile storms according to whether
the heaviest rainfall occurs in the 1st, 2nd, 3rd, or 4th quarter of the event. Second, it
estimates four representative curves (one for each group) by averaging the profile of
all events within the group. Finally, it estimates the empirical probability associated to
each group. Since the available rainfall time series has a hourly resolution, the Huff’s
method is only applied to rainfall events with a duration of at least 4 hours. The profile
of the 4 rainfall groups estimated for the study area are illustrated in Fig. 2.5a; the cor-
responding probabilities (for the 1st, 2nd, 3rd, and 4th quartile storms) are 45.8%, 24.9%,
18.1%, and 11.2%. Shorter rainfall events (<4 hours) are assumed to follow the same
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FIGURE 2.4: Grey circles are the stochastic rainfall replicates generated
using the multivariate distribution based on Frank copula and the uni-
variate marginals. Purple circles are rainfall events observed from 2008-
2017. The red cross is the design storm used for both SA and simulation-
optimization. Black dotted lines bound the rainfall conditions consid-

ered for the robustness analysis.
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probability distribution of the 4 Huff’s types.

The models described above allow generating stochastic rainfall events. Here, the
challenge lies in representing a wide range of rainfall conditions, so as to meaningfully
support the robustness analysis. Instead of using Monte Carlo simulation, which tends
to be computationally intensive (Yazdi, Lee, and Kim, 2014), we approached the gener-
ation process by dividing the range of rainfall duration and intensity into intervals of
equal size; events with the ‘same’ duration and intensity can then be further divided
into 4 different profiles. As we shall see later in the results, this approach also helps
understand how sensitive each optimized drainage system is to rainfall duration, in-
tensity, and profile. The result of this process is illustrated in Fig. 2.5b: the ranges
for average rainfall intensity and duration are set equal to [0, 30] (mm/hr) and [0, 24]
(hours), with the two upper bounds (i.e., 30 and 24) falling at the 99.9th percentile of
the respective univariate marginal distribution. These ranges are then divided into 10
equal intervals, resulting in a 10 by 10 gridded area. The choice of 10 intervals strikes a
balance between two factors: first, the intervals must be wide enough to limit the num-
ber of grids and hence the number of SWMM simulations; second, the intervals need
to be narrow to ensure that events falling within a grid would yield similar simulation
outcome. Fig. 2.5b shows the probability associated with each grid, calculated using
the marginal distributions and the Frank copula. Note that 49 grids have probability
of at least 5% (shaded grids), meaning that the chance that within a given year a rain-
fall event occurs with duration and intensity within the range specified by the grid is
at least 5%. The center for each of the 49 grids is then taken to be the representative
rain event for the grid, with the underlying assumption that the SWMM simulation
outcome does not differ greatly across different values of rainfall variables within a
grid. The total rain volume was then distributed across time using a 5 minutes time
step according to the 4 Huff’s profile groups. Therefore, for each of the 49 grids, 4 time
series of rain events with the same duration and intensity, but a different profile, are
generated, yielding a total of 196 rainfall events.

2.3.4 Robustness analysis

Many robustness metrics have been proposed in the water resources community (Her-
man et al., 2015; Giuliani and Castelletti, 2016; McPhail et al., 2018), with each of them
reflecting different levels of risk aversion. The robustness metric used here is a ‘satisfic-
ing metric’—also known as Starr’s domain criterion (Starr, 1963; Schneller and Sphicas,
1983)—that is based on the idea of counting the number of times a solution satisfies a
pre-defined performance threshold. This metric has lately found successful applica-
tion in problems such as reservoir operations (Quinn et al., 2018; Libisch-Lehner et al.,
2019) and design of water supply portfolios (Herman et al., 2014). In our study, we
use such metric to add up the weights corresponding to the rainfall events in which a
drainage system satisfies the performance thresholds. To calculate the robustness Rs

of the s-solution (returned by the simulation-optimization) across all rainfall events,
we proceed in two steps. First, we calculate the score Ss,q, which takes value 1 if the
performance Ps,q of the s-solution on the q-th event is element-wise greater than the
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FIGURE 2.5: (a) Median time distribution curves for the four Huff’s rain-
fall types (b) Probability of occurrence of the rainfall events calculated
using the fitted marginal distributions and copula. Color of the grid rep-
resents the probability that a rainfall event with characteristics falling
within the grid will occur in a year. The purple circles are the 1,720 rain-
fall events observed from 2008 to 2017. The red cross is the design storm

used for the sensitivity analysis and simulation-optimization.

threshold Ts (and 0 otherwise). The score is formally defined as follows:

Ss,q =

{
1 Ps,q ≥ Ts

0 otherwise
, (2.9)

where the performance Ps,q is the reduction in overflow volume and number of flooded
nodes (calculated with Eq. 2.1 and 2.2), and the threshold Ts is the performance of so-
lution s on the design storm, namely:

Ts =

[
JOverflow(xs)
JNode(xs)

]
. (2.10)

The robustness metricRs is then calculated by taking the weighted sum of the score
Ss,q across the NE rainfall events that caused an overflow in the existing drainage sys-
tem, that is:

Rs =

NE∑
q=1

Ss,q × wq , (2.11)

where wq is the weight associated to the q-th rainfall event. The latter is proportional
to the risk of the q-th rainfall event, which is the product of Prq (the probability of
occurrence of the q-th event) and Fq (the overflow volume in the existing drainage
system for the q-th event calculated similarly to Fbaseline in Eq. 2.1):

wq =
Prq × Fq∑NE
l=1 Prl × Fl

. (2.12)
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With the satisficing metricRs, we thus seek to understand whether a solution meets
the pre-defined level of performance for most rainfall events. The performance thresh-
old defined here sets the expectation that a robust drainage solution should perform as
good as what it is designed for when simulated under other rainfall events. The defi-
nition of satisficing metric adopted here has two key features. First, satisficing metrics
generally give equal weight to all events because such metrics are commonly used for
decision-making problems under deep uncertainty (McPhail et al., 2018), where one
knows the range of variability of the stochastic disturbances but not their underlying
probability distribution function. In this case, however, such distribution is available,
so we consider weights that are proportional to the risk. Second, the threshold is usu-
ally a fixed value applied to all design alternatives, however it is solution-dependent
here. The reason for this choice is that design alternatives have different investment
costs, hence it would be disadvantageous to less expensive solution if the same thresh-
old was applied to all solutions. In other words, the solution-dependant threshold
implicitly accounts for the investment costs and accounts for a scenario in which one
expects a performance comparable to the one attained on the design storm. Note that
the multivariate performance threshold can be modified to be univariate by consid-
ering only one objective at a time. In the event that only flooded nodes are consid-
ered, the weights should also be changed accordingly to be proportional to the num-
ber of flooded nodes instead of overflow volume. Also, note that the reduction in the
number of flooded nodes is always rounded down to the nearest integer (e.g., if the
flooded nodes reduction threshold is 10% and there are 11 flooded nodes in the exist-
ing drainage system, a solution needs to reduce only 1 flooded node).

2.4 Case study results

To illustrate the results yielded by our computational framework, we begin by describ-
ing the output of the simulation-optimization step, namely the set of Pareto-efficient
solutions. We then continue with the robustness analysis, in which we also show how
duration, intensity, and profile of rainfall events affect the robustness of drainage sys-
tems.

2.4.1 Performance of the Pareto-efficient solutions

The 10 independent optimization experiments returned a total of 669 Pareto-efficient
solutions, which are illustrated in Fig. 2.6. As expected, results show that the reduction
of overflow volume and number of flooded nodes (for the design storm) improve with
the investment costs, with the most expensive alternatives (about $76 millions) guar-
anteeing a reduction of overflow volume and number of flooded nodes up to 60% and
26%, respectively. Results also show that the reduction in the number of flooded nodes
is smaller than the reduction in the overflow volume—even if these two variables are
positively correlated (r = 0.87). This is because of three reasons. First, overflow can be
reduced but not completely eliminated at some nodes. Second, a few flooded nodes are
far from the selected sites for pipe expansions and LID implementations, so flooding
issues at these nodes cannot be solved. Third, increasing flow capacity tends to transfer
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peak flows downstream, and new overflows are created in other segments of the net-
work. In this last case, the total overflow is reduced, but is distributed over more nodes.

An interesting feature of the optimization results is the kink located in the mid-
dle of the Pareto front (where the overflow reduction is about 50% and investment
costs $13 millions), after which the Pareto front becomes much steeper. This suggests
that, for investments lower than $13 millions, significant improvements in overflow
reduction (and number of flooded nodes reduction) can be obtained with marginal
investment increases; beyond $13 millions, additional investments have diminishing
returns in overflow reduction (and number of flooded nodes). This feature can be ex-
plained by Fig. 2.7, which illustrates for each solution the relation between the relative
investments in pipe expansions and LIDs (for a given solution, the relative investment
in pipe expansions or LIDs is simply the ratio between the investment made and the
maximum allowable investment). The figure shows that all solutions with limited in-
vestments are only characterized by pipe expansions; a pattern observed up to until
75% of the maximum allowable cost for pipe expansion, which corresponds to about
$13 millions. Beyond this point, overflow volume can no longer be reduced by fur-
ther pipe expansions, so the investments are suddenly oriented towards LIDs, which
provide an additional 10% overflow volume reduction. In other words, these results
suggest that pipe expansion is a more effective strategy for controlling pluvial floods in
this case study, since additional capacity can convey a larger amount of stormwater and
also act as storage. Naturally, the implementation of LIDs to a larger number of sub-
catchments would further decrease the overflow volume, although one might expect
that pipe expansions would still be selected first, owing to their lower costs and greater
effectiveness in transferring peak flows. In addition, it should also be noted that LIDs
have more pronounced effects in a temperate climate with less intense rainfall rather
than in Ho Chi Minh City, which has a tropical climate (Carpenter and Kaluvakolanu,
2011). Finally, note that LIDs provide additional benefits beyond runoff reduction, such
as increased groundwater recharge or mitigation of the urban heat island (Fletcher, An-
drieu, and Hamel, 2013), which are not included in our problem formulation.

2.4.2 Robustness analysis

Fig. 2.8a shows the robustness of each Pareto-efficient solution, as defined in Eq. 2.11.
Robustness lies between 0.4 to 0.8 for most Pareto-efficient solutions, meaning that they
attain a desired level of performance of 40 to 80% (in terms of weights) on the stochastic
rainfall events. The variance in robustness decreases with increasing performance (and
cost); thus, the expensive Pareto-efficient solutions that attain more than 50% overflow
reduction (for the design storm) have robustness that ranges from 0.5 to 0.7. Fig. 2.8b
and 2.8c show the cumulative distribution of performance for the two objectives, over-
flow reduction and flooded nodes reduction, for all Pareto-efficient solutions across the
simulated rainfall events. Note that the cumulative distribution here refers to weights,
defined in Eq. 2.12, and not probability, such that rainfall events with larger flood or
higher frequency have higher weights. In particular, a point at (50%, 0.6) can be in-
terpreted as the solution achieving reduction greater than or equal to 50% for 0.6 (in
terms of accumulated weights) of the stochastic rainfall events. The markers in these
two figures correspond to the robustness if only one objective is used as the satisficing
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FIGURE 2.6: 669 Pareto-efficient solutions from the simulation-
optimization step. The three objectives are represented by the axes
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threshold in Eq. 2.10. In the ideal case (in which all solutions were robust), we should
expect the markers to be at 1.0, which means that the solutions perform equal to or
better than what they are designed for during the simulation-optimization for all sim-
ulated rainfall events. None of the solutions are robust against all rainfall events when
considering a univariate satisficing threshold, although bigger investments generally
translate to better performance in both overflow and flooded nodes reduction as can
be seen from the higher cumulative distribution of the most expensive solutions. Both
Fig. 2.8b and 2.8c also show the same trend of decreasing variance in robustness as the
cost of solutions increases. However, this is more apparent in Fig. 2.8b, where robust-
ness stagnates at 0.7 for drainage solutions above $13 millions.

Three main points are highlighted in Fig. 2.8. First, alternative drainage designs of
similar cost can have varied performance in different rainfall events, and consequently
achieve different robustness. This implies that selecting a solution from the Pareto-
efficient set is not straightforward, as one solution can outperform another solution
in many other rainfall events even if they perform similarly for the design storm. In
addition, even less costly solutions can outperform the more costly ones in some rain-
fall events. This is indicated by the intersecting lines in Fig. 2.8b and 2.8c. Second,
LIDs play a smaller role than pipes in influencing robustness. The costly drainage
solutions characterized by different LID deployments show little variance in robust-
ness, whereas less costly solutions characterized by different pipes expansion can at-
tain higher robustness. This is likely because costly drainage solutions all have similar
pipe arrangements (that work well for the design storm), and when this arrangement
is not adequate for a rainfall event, different LIDs arrangement are unable to improve
robustness. Robustness is primarily determined by pipe arrangements, whereas LIDs
play a more complementary role, contributing additional overflow or flooded nodes
reduction but not enough to increase robustness. Third, all solutions underperform in
some rainfall events. Even though alternative pipe designs allow some solution to at-
tain higher robustness, no solution is completely robust. The horizontal line in Fig. 2.8b
at y = 0.8 illustrates the sudden drop in performance across all solutions, where a max-
imum of only 20% overflow reduction can be achieved on the stochastic rainfall events
regardless of the cost of the drainage solutions.

To better understand the robustness of the Pareto-efficient solutions, we investigate
the relationship between the characteristics of the rainfall events (i.e., duration, inten-
sity, and profile) and the performance of the drainage systems (i.e., reduction of over-
flow volume and number of flooded nodes), on which robustness depends. Fig. 2.9a
shows the number of successes (i.e., number of solutions meeting the multivariate per-
formance threshold) for each rainfall event. For rainfall events with moderate intensity
(between 6 to 24 mm/hr), most, if not all, solutions meet the threshold. This explains
why the robustness for most solutions is above 0.4, since these moderate events repre-
sent 40% (in terms of weights) of all rainfall events. For intense rainfall events (i.e., the
most intense events with duration ranging between 3 and 12 hours), less than half of
the solutions meet the performance thresholds. This is even more apparent for rainfall
events that are not of profile 1. Since these solutions are designed for the design storm,
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which has rainfall profile 1, they underperformed when simulated under another pro-
file. These intense rainfall events are responsible for the gap in robustness between
the more costly and less costly solutions. The underperformance in these events also
points out that using a single design storm during the optimization process is insuf-
ficient. Rainfall events of longer duration, although less intense, may have a greater
depth and result in greater flood than the design storm. Therefore, a robust drainage
solution may only be found with an optimization problem that considers multiple rain-
fall events. Finally, the most interesting results illustrated in Fig. 2.9a is the fact that the
drainage systems do not perform well for the smallest rainfall events with intensity
lower than 6 mm/hr and duration shorter than 2.4 hours, which explains the sudden
drop in performance shown in Fig. 2.8b. The cause for the poor performance in these
small events is that the overflow occurs near the catchment outlet when high tide coin-
cides with rainfall; yet, the expansion of pipes near the catchment outlet is not selected
as a decision variable by the sensitivity analysis (recall that the sensitivity analysis is
also based on the design storm). Overflow near the catchment outlet is observed in
the design storm; however, overflow at other areas of the NL-TN basin is more severe,
so the sensitivity analysis selects pipe variables in other areas of the catchment. The
broader implication is that for a large watershed, overflow can occur at different loca-
tions for different rainfall events; hence, if the design is made with respect to a design
storm, flood may persist in events that are different from the design storm.

Fig. 2.9b and 2.9c show how mean overflow reduction and flooded nodes reduction
(across all solutions) vary as a function of rainfall duration, intensity, and profile. For
moderate intensity events, the mean overflow reduction and mean flooded nodes re-
duction largely exceed the value of 43% and 13%, respectively, achieved for the design
storm (reaching more than 90% for some events). In general, performance improves
as rain intensity decreases and for events more intense than 15 mm/hr, performance
improves with decreasing duration. For the intense rainfall events similar to the de-
sign storm, the mean overflow reduction is about 35–50% and the mean flooded nodes
reduction is 0–15%—values comparable to the performance during the design storm.
Once again, performance for rainfall profile 1, especially for the most intense 3-hour
event, which is rather similar to the design storm, is better than the performance for
other rainfall profile types. In particular, performance for intense events of profile 3
is the poorest. For the small but frequent rainfall events, mean overflow reduction
is lower than 10%. Fig. 2.9 highlights that all three rainfall characteristics could af-
fect the performance of solutions. Overall, performance (and consequently robustness)
appears to be more sensitive to rainfall depth and intensity, as the division between
different levels of overflow or flooded nodes reduction is mostly vertical or diagonal.
This also means that broader categories of rainfall events could be considered in the
future so that fewer simulations would be needed to find a robust solution.



Chapter 2. Optimizing drainage system using design storms: are solutions robust? 24

0.00

0.25

0.50

0.75

1.00

0255075100
Overflow reduction (%)

R
ob

us
tn

es
s

0

10

20

Flooded 
nodes 
reduction (%)

(A)

0.00

0.25

0.50

0.75

1.00

0255075100
Overflow reduction (%)

C
D

F

20

40

60

Cost 
(millions)

(B)

0.00

0.25

0.50

0.75

1.00

0255075100
Flooded nodes reduction (%)

C
D

F

20

40

60

Cost 
(millions)

(C)

FIGURE 2.8: (a) Robustness of Pareto-efficient solutions when both re-
duction in overflow volume and number of flooded nodes are used as
performance thresholds. The x-axis and color represent the performance
(i.e., reduction in overflow volume and number of flooded nodes) of
each solution during the design storm. Cumulative distribution for (b)
overflow reduction and (c) flooded nodes reduction for each solution
across the stochastic rainfall events. Only events with 10 or more flooded
nodes in the existing drainage system are considered for (c). Mark-
ers correspond to performance during the design storm (on the x-axis)
and robustness of the solution (on the y-axis) if only a single objective
(overflow reduction or flooded nodes reduction) is used as performance
threshold. Note that the x-axis is inverted so that it proceeds in the di-

rection of degrading performance from left to right.
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FIGURE 2.9: (a) Number of successes (i.e., solutions that meet the per-
formance thresholds) for each stochastic rainfall event characterized by
different duration, intensity, and profile. (b) Mean overflow reduction
(%) and (c) mean flooded nodes reduction (%) of all solutions in each
rainfall event. Solutions generally performed better than designed in
events with moderate intensity, underperformed in events with high
rainfall depth (the most intense events ranging from 3 to 12 hours) and

performed poorly in events much smaller than the design storm.
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2.5 Conclusion

Design storms have dominated the planning of urban drainage systems for multiple
decades. However, the solutions achieved by optimizing the design of such infrastruc-
ture with respect to a few, representative rainfall events may not be robust to events
characterized by different duration, intensity, or profile. In this work, we present
a novel computational framework specifically conceived to assess the robustness of
drainage systems with respect to multiple stochastic rainfall replicates. Its application
to the Nhieu Loc-Thi Nghe basin (Ho Chi Minh City) revealed a few interesting in-
sights:

• None of the drainage solutions are completely robust, since their performance
in the design storm cannot be replicated for all rainfall events. In particular, we
found that alternative designs with similar performance during the design storm
can perform differently for other rainfall events. Hence, the results obtained dur-
ing the optimization process may provide a myopic and biased picture of the
systems’ real performance;

• Between pipes and LIDs, investments aimed at expanding pipes (i.e., the con-
veyance capacity) have a greater effect on reducing flood and potentially increas-
ing robustness of the drainage system. Investments in LIDs can alleviate flood
extent during rainfall events but are secondary to pipe expansions in determining
robustness. In this respect, it should also be noted that LIDs can possibly func-
tion better in less intense storms in temperate climates (in contrast to the tropical
climate experienced in Ho Chi Minh City). Also, the deployment of LIDs was
considered for only a limited number of sub-catchments—a broader deployment
of LIDs in the catchment may bring greater performance;

• Solutions optimized with respect to a design storm are not robust for two types of
rainfall events: 1) less intense but longer rainfall events, which have greater depth
and cause more severe floods than the design storm, and 2) small, yet frequent,
rainfall events. For the first type, costly solutions tend to underperform as the
performance during design storm cannot be replicated. For the second type, all
solutions underperform significantly, due to the poor choice of the decision vari-
ables (recall that such choice is based on the design storm). Small, frequent floods
happen in the area close to the catchment outlet; yet, no major modifications to
the drainage network in this area are made.

Overall, this first part of our work suggests that the use of design storms can limit
the robustness of drainage systems. Naturally, different design storms lead to differ-
ent solutions, but it is unlikely that any of these solutions can be robust against rain-
fall conditions that deviate from the adopted design storm. To overcome this prob-
lem, stochastic rainfall replicates should be considered throughout the design process,
namely when selecting the decision variables, optimizing their values, and evaluating
ex-post the solutions’ performance. Yet, this approach would largely impact the com-
putational requirements, especially for large basins. This problem could be tackled in
two complementary ways. First, one could consider the idea of reducing the number
of rainfall events used in the analysis. Our results show that the performance of the
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drainage systems is particularly sensitive to rainfall intensity, so this could be lever-
aged to classify rainfall events into broader groups. Second, surrogate models could
replace SWMM in the most computationally-expensive parts of the design process (i.e.,
sensitivity analysis and optimization). Surrogates have been applied successfully in the
water resources literature (Razavi, Tolson, and Burn, 2012; Castelletti et al., 2012a), in-
cluding urban drainage (Mahmoodian et al., 2018a) and flood risks assessment (Löwe
et al., 2018; Yazdi and Neyshabouri, 2014).

In the next chapter, we look into surrogate-assisted optimization and explore a new
approach to urban drainage design, one that moves away from design storms but con-
siders stochastic rainfall event, which gives greater focus on robustness during the op-
timization step.
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Chapter 3

Designing robust urban drainage
systems: a data-driven approach

3.1 Introduction

In the previous chapter, we established that optimizing drainage systems using the de-
sign storm alone may give solutions that are not robust against rainfall events with
characteristics deviating from the design storm. This prompts the need to consider
stochastic rainfall events during optimization, which in turn increases the number of
simulations needed and places large demands on computational resources. To counter
this issue, we look into an alternative to process-based models (such as SWMM), which
is surrogate modelling.

Surrogate models are computationally faster and cheaper alternatives to simulation
models and have been used for search (optimization) or sampling purposes – tasks that
require repeated use of simulations. Surrogate models have been extensively applied
to mechanical and aerospace engineering problems and its use has later extended into
the water resources community, with application in groundwater remediation, water
distribution networks, and urban drainage systems (see the survey by Razavi, Tolson,
and Burn, 2012). While surrogate models for urban drainage simulator have been de-
veloped (Machac, Reichert, and Albert, 2016; Carbajal et al., 2017; Moreno-Rodenas
et al., 2018), embedding these models in an optimization framework has not yet been
explored. Yet, the successful applications of surrogate-based optimization in a wide
range of water resources problems indicate that it could be a viable method for the de-
sign of robust urban drainage system. In this chapter, we aim to find out if a surrogate-
assisted optimization that considers stochastic rainfall events can aid the design of ro-
bust drainage systems. In particular, we aim to answer the following questions: (1)
Does including stochastic rainfall events during the optimization phase result in so-
lutions that are robust against various rainfall conditions?; (2) To what extent can a
surrogate-assisted optimization allow us to obtain robust solutions in a shorter time?;
(3) What is the tradeoff between accuracy and complexity of surrogate models used to
emulate overflow of an urban drainage simulator?

To do this, we first stochastically generate rainfall events of varying duration, inten-
sity, and profile and then select representative rainfall events that cover a wide range
of overflow conditions. Next, we construct data-driven Gaussian process (GP)-based
emulators to predict the overflow conditions during the representative rainfall events.
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We then use three optimization schemes to search for Pareto-efficient configurations of
urban drainage. The optimization schemes are surrogate-assisted optimization, which
uses the emulators constructed in the previous step, simulation-optimization using rep-
resentative rainfall events, and simulation-optimization using design storm only. We
finally evaluate robustness of the Pareto-efficient solutions obtained from the three op-
timization schemes using an unseen set of stochastic rainfall events. Using the Nhieu
Loc-Thi Nghe basin (Ho Chi Minh, Vietnam) as a case study, we demonstrate the value
of this computational framework in deriving robust urban drainage design.

The chapter is organized as follows: We start with a literature review on surrogate
modelling, then we describe the data-driven GP emulation approach adopted in our
framework. Next, we introduce the new computational framework that aims to derive
robust drainage systems within limited computational budget. Finally, we present the
results of applying this framework to the Nhieu Loc-Thi Nghe basin and conclude the
chapter.

3.2 Literature review on surrogate modelling

Surrogate modelling is an umbrella term for a wide range of methods that develop and
utilize computationally efficient alternatives to higher-fidelity simulation models (such
as SWMM). As simulation models are developed to represent rigorously the physical
laws of the real-world, they are computationally intensive. The repeated use of sim-
ulations in some settings adds on to the computational burden. Surrogates models
are faster and cheaper to run, although they may compromise on, the sometimes un-
needed, model accuracy. Surrogate modelling has found significance over the last two
decades in design, control, parameter calibration, design space exploration, optimiza-
tion, sensitivity or uncertainty analysis, all of which involve iterative model evalua-
tions over a potentially large parameter space (Razavi, Tolson, and Burn, 2012; Benner,
Gugercin, and Willcox, 2015).

Although classification of surrogate modelling may differ, it can be largely divided
into two broad families: response surface modelling and lower-fidelity modelling (Razavi,
Tolson, and Burn, 2012; Castelletti et al., 2012a). In the first family, response surface
surrogates, also known as emulators, metamodels, model emulation, or proxy models
(terms which are used interchangeably henceforth), are empirically data-driven models
that use interpolation or regression to approximate, for different values of explanatory
variables, the response of the original simulation model. The response is usually an
aggregated output of the simulation model and a different response surface has to be
fitted for each model response (with the exception of neural network). Common tech-
niques employed in response surface surrogates include polynomials, Gaussian pro-
cesses (GP) (or kriging), radial basis function, polynomial chaos expansion, support
vector machines, and neural networks (Forrester, Sobester, and Keane, 2008; Razavi,
Tolson, and Burn, 2012). One main advantage of response surface modelling is that it is
non-intrusive; it solely relies on the input-output pairs generated from the simulations
while the simulation model can remain as a “black-box” function. This can be useful
when the underlying equations of the simulation model are not easily accessible and
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the data-driven approach allows it to be readily adaptable to other problems.

In the second family, lower-fidelity surrogates are simplified physically-based mod-
els of the original higher-fidelity models. Unlike response surfaces which predicts
model response, lower-fidelity surrogates represent system dynamics at a lower order.
There are two main classes of lower-fidelity models, one is the projection-based re-
duced model (also called model reduction) and the other is hierarchical model (Eldred
and Dunlavy, 2006). A projection-based reduced model projects system operators onto
a reduced subspace, retaining the system state representation and underlying structure
of the original model (Antoulas, 2005; Benner, Gugercin, and Willcox, 2015). Hierar-
chical model are like the original models but with reduced numerical accuracy, relaxed
physical assumptions, or coarser temporal or spatial grid size. Lower-fidelity models
can be hard to construct owing to its intrusive nature and the need for domain-specific
knowledge. However, once the model is constructed, it is able to simulate different
condition or give multiple model responses since it has retained the physically-based
characteristics of the original model. Finally, the two families of surrogates are not
mutually exclusive because both data-driven response surface surrogate and model-
driven lower-fidelity surrogate can be employed in hybrid approaches (Bermúdez et
al., 2018; Carbajal et al., 2017; Castelletti et al., 2012b; Machac, Reichert, and Albert,
2016; Mahmoodian et al., 2018b).

The use of surrogate models has extended into the water resources community,
with application in groundwater remediation, water distribution networks, and urban
drainage systems (Razavi, Tolson, and Burn, 2012). Surrogates for urban drainage sim-
ulators are varied in terms of the response variable emulated and also in terms of the
technique, which can range from purely data-driven to purely model-driven. Xu et al.,
2010 and Xu, Overloop, and Giesen, 2013 employ a model-driven approach, applying
model reduction technique to the St Venant equations to predict water quantity and
quality in real time control of open channel systems. On the other hand, Nagel, Rieck-
ermann, and Sudret, 2020 use a data-driven approach using sparse polynomial chaos
expansion (PCE) to predict discharge from a catchment. More often, we see hybrid
surrogates being used. Bermúdez et al., 2018 develops a hybrid surrogate model that
combines artificial neural networks (ANN) with a conceptual sewer and flood model
to predict surface flood volume based on rainfall inputs. Moreno-Rodenas et al., 2018
combines hydrology knowledge with PCE to emulate flow under various rainfall and
parametric scenarios. Carbajal et al., 2017 compares a naïve data-driven GP emulator
with a mechanistic emulator to approximate water level and inflow in SWMM. They
find that including mechanistic knowledge of the simulation model is only advanta-
geous when training data are sparse and unevenly sampled. Machac, Reichert, and
Albert, 2016 and Machac et al., 2016 come to a similar conclusion that including mech-
anistic description in an emulator for urban drainage modelling is a reasonable tradeoff
between computational complexity and the size of design data set.

More often than not, surrogates are built so that they can be utilized within a
metamodel-enabled analysis framework which can be used for search (optimization) or
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sampling purposes. Razavi, Tolson, and Burn, 2012 classified metamodel-enabled anal-
ysis framework into 4 types. The first type is the basic sequential framework whereby
users fit a metamodel offline through a formal design of experiment (DoE), fully sub-
stitutes the original function with the metamodel, and perform analysis (search or sam-
pling) on the metamodel directly (Broad, Dandy, and Maier, 2005; Broad, Maier, and
Dandy, 2010; Galelli, Castelletti, and Goedbloed, 2015). Next is the adaptive-recursive
framework whereby users first fit a metamodel through a formal DoE, use the meta-
model to identify region of interest in the input space, and evaluate new points(s) us-
ing the original function. The metamodel is updated with the new input-output pair(s)
and the updating steps are repeated until convergence or stopping criteria are reached
(Tabatabaei et al., 2015; Fen, Chan, and Cheng, 2009; Zou, Lung, and Wu, 2009; Castel-
letti et al., 2010). The third type is the metamodel-embedded evolution framework
which is limited to analyses dependent on evolutionary optimization algorithms (Jin,
2011; Yazdi and Neyshabouri, 2014; Akhtar and Shoemaker, 2016; Zhang et al., 2017).
No formal DoE is needed initially, the population-based evolutionary algorithm pro-
ceeds for a few generations using the original function. A metamodel is fitted based on
the first generations and updated in the course of optimization since individuals are se-
lectively evaluated with either the metamodel or original function. The final type is the
approximation uncertainty based framework, which considers the uncertainty associ-
ated with the approximation instead of assuming approximated values as true, thus
it balances exploration with exploitation during the search (see algorithms like EGO
(Jones, Schonlau, and Welch, 1998), and MSRBF (Regis and Shoemaker, 2007), and ap-
plications in Di Pierro et al., 2009; Regis and Shoemaker, 2009).

When using surrogates for optimization, the choice of framework and related de-
sign considerations depend on our understanding (if any) of the complexity or smooth-
ness of the original function and also the computational budget, which represents a
tradeoff between speed of convergence and global accuracy of the model. For mul-
tiobjective optimization, as is often the case for water resources problems, all four
above-mentioned frameworks are applicable. Research to extend single objective sur-
rogate optimization to a multiobjective setting is well established (see ParEGO which
uses EGO iteratively to optimize aggregated objective functions (Knowles, 2006) or
SMS-EGO which uses multiple surrogates for multiple objectives (Ponweiser et al.,
2008)). It is also common to simply use a multiobjective evolutionary algorithm and
embed a metamodel within. Akhtar and Shoemaker, 2016 use a parallel response
surface-assisted multiobjective evolutionary algorithm to solve a groundwater remedi-
ation problem. They evaluate pumping decisions to minimize cost and contamination
and apply radial basis functions to approximate each objective. Regis and Shoemaker,
2009 solve a ground remediation problem using a parallel stochastic RBF algorithm
for global optimization. The metamodel dynamically evolves during the optimiza-
tion using new design points selected based on their approximated function value and
distance from previously evaluated points (a measure of approximation uncertainty).
Zhang et al., 2017 derives large-scale reservoir operating rules using weighted multi-
objective adaptive surrogate model optimization. Galelli, Castelletti, and Goedbloed,
2015 determine the optimal control of a multi-purpose reservoir by first performing
model reduction on a 3-D hydrodynamic model and then integrating the low-order,
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dynamic emulator into the real-time reservoir operation model. Broad, Dandy, and
Maier, 2005 and Broad, Maier, and Dandy, 2010 apply ANN to a water distribution
system and perform genetic algorithm directly on the trained metamodels. Di Pierro
et al., 2009 minimizes cost and head deficit of a water distribution network by using
ParEGO and LEMMO, a hybrid algorithm which uses machine learning techniques
together with a multiobjective evolutionary algorithm. Yazdi and Neyshabouri, 2014
couple a periodically updated ANN model with NSGA-II to determine detention dam
heights for flood control under rainfall uncertainties.

Since surrogates have been effectively employed in optimization to solve water re-
sources problem but have not been explored for urban drainage planning, we thus em-
ploy an emulation approach for urban drainage model and use the emulator within our
optimization framework to investigate its potential in designing robust urban drainage
systems.

3.3 Data-driven GP emulator

We first describe the emulation approach used to approximate the SWMM model. We
will use the terms ‘inputs’, ‘parameters’, or ‘decision variables’ to refer to the inputs of
the simulator and the terms ‘outputs’ or ‘response’ to refer to the outputs of the sim-
ulator. Also note that the inputs to the simulator are also the decision variables that
will be used for optimization in the later step. In our case, the inputs are the sewer
pipe sizes and LID areas and the outputs are the the overflow volume and number of
flooded nodes during each rainfall event of interest. To approximate this, we adopt
the data-driven GP-based method developed by Carbajal et al., 2017. We select this
emulator due to the followings reasons: (1) the emulator output is a time series instead
of an aggregated output; (2) the emulator is purely data-driven and hence could be
readily applied to any catchment model. As we are interested in the overflow condi-
tions, which can be highly nonlinear due to surcharge flows in pipes (Rossman, 2015),
it becomes difficult to include mechanistic knowledge in the emulator. Furthermore,
Carbajal et al., 2017 notes that it is advantageous to use data-driven emulators when
we lack good prior knowledge about the simulator and when the parameter space can
be evenly well sampled. Since our primary aim is to design a robust drainage system,
we opt for a data-driven emulator that can be easily applied and incorporated into our
optimization schemes.

The data-driven GP emulator should be able to predict the time series of the re-
sponse of interest, ~y(~γ), given the parameters or inputs of the model, ~γ. The emulator
does so by first extracting the most significant dynamic features of the system response
(also known as the time varying basis) using matrix factorization. In this study, we
use singular vector decomposition (SVD) but other techniques like nonnegative matrix
factorization (NMF) can be used too. It then uses GP (Rasmussen and Williams, 2006)
as a mapping between the parameters and the coefficients of the linear combinations of
the dynamic features. Given any new parameters, the unseen response is then approx-
imated by the linear combination of the features. Since a time series of model response
is predicted by the emulator, there is added flexibility in deriving different aggregated
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output from the model such as the sum, mean, or maximum value of the time series.

The emulator is constructed with the following steps:

(i) Perform a design of experiment to select n points in the parameter space (denoted
by parameters ~γ) and run the simulation model for each point. Each simulation
output is a time series of the variables of interest of length N . Allocate ntrn input-
output pairs as the training set and ntst input-output pairs as the test set, where
ntrn + ntst = n.

(ii) Given the output matrix Y ∈ RN×ntrn , perform SVD. This is the step where we
extract the dynamic features of the model response. We obtain the orthogonal
matrices Φ ∈ RN×ntrn , W ∈ Rntrn×ntrn , and nonnegative diagonal matrix Σ ∈
R

ntrn×ntrn that fulfills

Y = ΦΣWT . (3.1)

Y can be decomposed into
Y = ΦB , (3.2)

where
B = ΣWT (3.3)

and Φ are the eigenvectors (or principal components) of the covariance matrix
YYT . The columns of Φ are the dynamic features, or time varying basis, of the
model response. The columns of B are the coefficients of the linear combinations
of the features for each training point.

(iii) Extract only the first q ≤ ntrn features Φ′ from Φ (i.e., the first q columns). Since
approximation degrades rapidly with decreasing number of principal compo-
nents, this is the time varying basis that contains the most significant features
of the system response. We also obtain matrix B′ ∈ Rq×ntrn (i.e., first q rows of
B) of coefficients where there are q coefficients for each training point.

(iv) Interpolate using GP to obtain a function of the inputs B′ = f(~γ).

(v) Finally, given any new points in the test set, we can now evaluate f(~γ), and pre-
dict the output time series using

~y(~γ) = Φ′f(~γ) . (3.4)

3.4 Computational framework

The computational framework developed for this study consists of 4 steps, illustrated
in Fig. 3.1. We begin with stochastic rainfall generation to generate and select rainfall
events that can be representative of overflow conditions caused by events of varying
rainfall intensities, duration, and profiles. Next, we construct GP emulators to approx-
imate the overflow conditions under these selected rainfall events given different pipe
sizes or LID implementations in the catchment. Multiple emulators are constructed
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using different size of design data set (n) and different number of features of system
response selected (q), which allows us to study how these parameters affect the accu-
racy of the emulator. We then use the emulators in our optimization problem where
we seek a set of Pareto-efficient solutions that minimize the investment costs while
maximizing the reduction in both overflow volume and flooded nodes during the rep-
resentative rainfall events. We compare this surrogate-assisted optimization scheme
with the computationally expensive robust simulation-optimization scheme and also
the design storm simulation-optimization scheme. Finally, we evaluate the robustness
of the solutions derived from the three optimization schemes by simulating them un-
der random samples of rainfall events.

Note that this framework is similar to the framework introduced in Section 2.3 with
the following key differences. First, rainfall generation step is brought earlier ahead
of the optimization step so that we can account for various rainfall conditions during
optimization. Second, emulators are used to replace simulation models during opti-
mization to manage the additional computational demands brought about by the in-
clusion of more rainfall events. The framework introduced can be readily applied to
any catchment model. In the following sections, we demonstrate its application to the
Nhieu Loc-Thi Nghe Canal and Basin, a 33 km2 catchment in the central area of Ho Chi
Minh City, whose data are described in Section 2.2.

3.4.1 Stochastic rainfall generation

Using the 10-year hourly rainfall time series described in Section 2.2.2, we model the
marginal distribution of rainfall duration and intensity using lognormal and gamma
distribution respectively, and model the dependence structure between the two vari-
ables using a Frank copula (refer to Section 2.3.3). We now sample from these dis-
tributions rainfall events with various duration and intensities for a 25-year period.
While we note that the recommended design return period is largely region specific,
we choose a 25-year period because urban drainage for a large catchment (like the
Nhieu Loc-Thi Nghe basin) is commonly designed for a return period of 25 years or
more (Code of Practice on Surface Water Drainage 2011; Stormwater Drainage Manual 2018).
Although the design storm used in Chapter 2 is a 2-year design storm, we want to con-
sider an extensive range of rainfall events, including events smaller and larger than the
design storm, to test our framework.

By sampling from the distributions, we select 259 rainfall events after accounting for
rounding differences, such that each event has intensity and duration that differs by at
least 1mm/hr and 1 hour, respectively. For instance, events with intensity ranging from
25 mm/hr to 26 mm/hr and duration ranging from 1 hour to 2 hour are considered as
one event represented by intensity of 25.5mm/hr and duration of 1.5 hour. Consid-
ering that there are four Huff profile types (Section 2.3.3) to describe the distribution
of rain over time, this gives us a total of 1,036 (259 × 4) rainfall events with varying
intensity, duration, and profile.

It would be prohibitively expensive computationally to seek solutions robust against
all thousand rainfall events, especially when sufficiently similar rainfall events would
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1. Stochastic Rainfall Generation

0. Sensitivity
analysis

3. Surrogate-assisted
optimization

4. Robustness
analysis 

Rainfall Data Set of all 
decision variables

Reduced set
of decision
variables

Pareto-efficient solutions

Design storm
Rainfall events obtained

from 10 years rainfall series

Model joint distribution
of rainfall intensity and
duration using copula

Model storm profile
by Huff's method

Sample rainfall events

Robust solutions

2. Design of emulators

k-means clustering 

Representative rainfall events
(cluster centroids)

Random rainfall events from
each cluster

Emulator

FIGURE 3.1: Flowchart of the computational framework, consisting of
4 main steps: 1) stochastic rainfall generation to select rainfall events
that are representative of a wide range of rainfall intensities, duration,
and profiles; 2) design of emulators to construct GP emulator that ap-
proximate SWMM; 3) surrogate-assisted optimization to obtain Pareto-
efficient solutions that performs well across the representative rainfall
events; 4) robustness analysis to evaluate the performance of the solu-
tions for random rainfall events. Sensitivity analysis to select decision
variables for the emulator and optimization problem depends on the de-

sign storm and is a step performed in the previous chapter.
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FIGURE 3.2: (a) Overflow volume (in logarithmic scale) of stochastic
rainfall events generated for a 25-year period. (b) 8 rainfall clusters ob-
tained using k-means clustering in which overflow conditions during
rainfall events in the same cluster are similar. The highlighted events for

each cluster is the event closest to the centroid of the cluster.

produce similar overflow conditions (as shown in Section 2.4.2). Thus, we first simu-
late the existing drainage system under these 1,036 events. The overflow volume for
each event is illustrated in Fig. 3.2a. Next, we cluster similar rainfall events using k-
means clustering (Berkhin, 2006). Each rainfall event is a data point represented by a
vector consisting of the logarithm of total overflow volume, the total number of flooded
nodes, and the overflow volume over each of the 137 nodes. 90 nodes in the drainage
system are not included here since they do not have overflow under all rainfall events.
The vectors of overflow conditions are normalized across all rainfall events. Fig. 3.2b
shows the 8 rainfall clusters selected through k-means clustering, where each cluster
consists of rainfall events that produce similar overflow conditions under the existing
drainage system. The highlighted rainfall event represents the rainfall event that is
closest to the centroid of the cluster. These 8 representative rainfall events are used in
the later steps of the computational framework under the hypothesis that a drainage
solution can reduce overflow for the clusters of rainfall events if it can do so for these
rainfall events.

3.4.2 Design of emulators

We now construct GP emulators to approximate the SWMM simulation model using
the method described in Section 3.3. Although 20 decision variables are selected in Sec-
tion 2.3.1, we only select the top 5 decision variables here (listed in Table 3.1 and 3.2)
because of two reasons. First, simulation-optimization using 20 decision variables and
multiple rainfall events is too computationally demanding. Second, high dimension-
ality of the problem can cause surrogate model to be less accurate or even infeasible.
Since Carbajal et al., 2017 built emulators for models with 1 to 8 parameters, we decide
to select a value within this range. Using 5 decision variables is large enough to observe
significant overflow reduction for the catchment and also small enough for us to test
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the emulator. The main aim in this chapter is to find out if surrogate-assisted optimiza-
tion using stochastic rainfall events can assist us in identifying robust solutions, thus
we do not wish to introduce high dimensionality at this stage. Scaling this approach to
a higher dimension will be addressed in the next chapter.

The emulators are constructed using different size of design data set (n = 50, 100,
150, 200, 250, 300, 400, 500) and different number of features of the system response (q
= 1, 2, 3, 4, 5, 7, 10, 15, 20, 25) to investigate the effect of these parameters on the accu-
racy of the emulators. The inputs to the simulation model are the pipe sizes and LID
areas. We select the design points in the parameter space using Latin hypercube sam-
pling (LHS) starting with n = 50, augmenting the existing LHS by adding new design
points while maintaining the LHS properties until n = 500. The outputs of the sim-
ulation model are the overflow time series and number of flooded nodes time series.
Each time series has 996 data points, recorded at 5 minutes interval. The time series
is formed by concatenating the overflow (or flood nodes) time series from each of the
8 representative rainfall events obtained from Section 3.4.1. Time series for individual
rainfall events begin when the rainfall event starts and ends 2.5 hours after rain has
ceased, ensuring all overflow are captured within the timeframe. The input and out-
put pairs of the simulator are used to construct the simulator, with a different emulator
constructed for a different output (i.e., one for overflow volume and one for flooded
nodes). Since the emulator predicts a time series of overflow or number of flooded
nodes, single or aggregated outputs that can be drawn from the time series include
total overflow volume, peak overflow, peak number of flooded nodes, and overflow
duration. We perform a k-fold cross validation (k = 10), partitioning the data randomly
into 10 equal size subsamples and always leaving 10% of the dataset out as test set.

We assess the accuracy of the emulators using the following measures:

(i) Kling-Gupta efficiency (KGE)

The KGE (Gupta et al., 2009) compares the correlation, variability, and bias be-
tween the predicted time series (from emulator) and observed time series (from
simulator). It is defined as follows

KGE = 1−
√

(r − 1)2 + (α− 1)2 + (β − 1)2 (3.5)

where r is the correlation coefficient, α the ratio between standard deviation of
predicted and observed values (σp/σo) and β the ratio between the mean of pre-
dicted and observed values (µp/µo). A value of 1 for KGE means that the pre-
dicted time series matches the observed one perfectly.

(ii) Mean bias error (MBE) or Mean absolute error (MAE)

MBE =
1

N

N∑
j=1

(ŷ(γj)− y(γj)) (3.6)
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TABLE 3.1: Description of the pipe variables used as input parameters for emulator

Decision
variable, xj

Pipe no. Shape Length, lj (m) Size, dj (m) Maximum
size (m)

x1 1 Rectangular closed 546 2.5 x 2.5 4
x2 4 Circular 180 1 2
x3 9 Rectangular closed 551 1.2 x 5 4
x4 12 Rectangular closed 900 1.8 x 4 4

TABLE 3.2: Description of the LID variable used as input parameters for emulator

Decision
variable, xj

LID
Sub-catchment properties Maximum

no. of unitsSub-catchment no. Area (ha) Impervious %

x5 Urban green spaces 3 102 70 4000

MAE =
1

N

N∑
j=1

|ŷ(γj)− y(γj)| (3.7)

Where ŷ and y are the emulated and simulated output respectively and N the
number of data points in the test set.

(iii) Root mean square error (RMSE)

RMSE =

√√√√ 1

N

N∑
j=1

(ŷ(γj)− y(γj))2 (3.8)

MBE captures the bias of prediction which is important when the emulators are
used in optimization, since a positive bias means that the solutions obtained
are not performing as well as expected. MAE captures the magnitude of error
whereas RMSE penalizes large deviation more.

3.4.3 Surrogate-assisted optimization

With the emulators constructed, we then proceed to identify optimal drainage solutions
through surrogate-assisted optimization. In our application, we adopt a basic sequen-
tial framework similar to that of Broad, Maier, and Dandy, 2010, by directly replacing
the simulation model with the emulator and coupling it with a multi-objective evolu-
tionary algorithm – that is NSGA-II. The decision variables are the pipe diameters for
the 4 pipes and number of LID units for the urban green space as listed in Table 3.1 and
3.2 and with details described in Section 2.3.2.

We consider three objectives, which are similar to Eq. 2.1-2.3 in Section 2.3.2. They
are slightly modified now because we are seeking robust solutions that are optimal for
8 representative rainfall events rather than just the design storm. We wish to maximize
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the weighted reduction in total overflow volume JOverflow
w , and the weighted reduc-

tion in peak number of flooded nodes JNode
w , and to minimize the capital cost JCost.

JOverflow
w accounts for the flood extent and is defined as follows:

JOverflow
w =

Q∑
q=1

(
wq ×

(
1−

∑Tq

t=1 g1,t,q(x)

Fbaseline,q

))
, (3.9)

where x is the vector of decision variables, Q the total number of rainfall events used,
which is 8 here;wq the weight of rainfall event q; Tq the total number of time instances (5
min intervals) in rainfall event q, N the total number of nodes in the drainage network,
g1,t,q(·) the overflow volume in the catchment at time t in rainfall event q predicted by
the emulator, and Fbaseline,q is the total overflow volume during rainfall event q for the
existing drainage system evaluated using SWMM.

The weight of rainfall event q,

wq =

∑
l∈Cq

Prl × Fbaseline,l∑NE
l=1 Prl × Fbaseline,l

, (3.10)

is associated to the rainfall cluster that rainfall event q represents (Cq is the set of rainfall
events in the cluster) and is proportional to the total risk risk (probability of occurrence
Prl multiplied by overflow volume Fbaseline, l) of rainfall events within the cluster,
which is also the definition used in Eq. 2.12 in Section 2.3.4.

The second objective JNode
w accounts for the spatial extent of the flood and is defined

as follows:

JNodew =

Q∑
q=1

(
wq ×

(
1− maxt g2,t,q(x)

N ′baseline,q

))
, (3.11)

where g2,t,q(·) is the number of flooded nodes in the catchment at time t in rainfall event
q predicted by the emulator; and N ′baseline,q the peak number of flooded nodes during
rainfall event q for the existing drainage system evaluated using SWMM.

Note that here we are maximizing weighted reduction in peak flooded nodes in-
stead of reduction in total flooded nodes as in Section 2.3.2. This is because our emula-
tion approach produces a time series of flooded nodes and it is possible to obtain peak
flooded nodes instead of total flooded nodes from the time series.

Finally JCost is the capital cost involved in pipe expansion and LID implementation.
It can be computed without an emulator and is defined the same way as in Eq. 2.3. The
goal of the optimization problem is to find the set of nondominated solutions x∗ that
minimizes the vector J(x), where

J(x) =

−JOverflow
w (x)
−JNode

w (x)
JCost(x)

 . (3.12)
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Since the solutions are evaluated by emulators during the optimization, we finally
evaluate the solutions obtained at the final generation and some intermediate gener-
ations using the SWMM simulation model. For NSGA-II, the distribution indices for
crossover and mutation are 0.9 and 0.1 respectively. The optimization problem is initi-
ated with 10 independent random seed and each of the 10 runs has a population size
of 200 and is terminated after 100 generations (a drop from 250 generations used in
Section 2.3.2 because we are handling fewer decision variables here).

We first perform surrogate-assisted optimization using the 40 different emulators
constructed (8 values for size of design data set (n = 50, 100, 150, 200, 250, 300, 400,
500) and 5 values for number of features of the system response (q =3, 4, 5, 7, 10)). In
other words, we solve for 40 optimization problems using a different emulator in each
problem. The purpose here is to investigate how the choice of emulators affects error
propagation during the search and the quality of solutions obtained from the optimiza-
tion. Due to the large computation demand, we only initiate the optimization search
with 5 independent random seed (instead of 10) for this set of experiments. We finally
select one emulator and run the surrogate-assisted optimization for 10 independent
random seed.

We then compare the surrogate-assisted optimization (R-EO for ’robust emulation-
optimization’) scheme with two other optimization schemes: robust simulation-optimization
scheme (R-SO) and the design storm simulation-optimization scheme (DS-SO). R-SO
has the same set-up as the surrogate-assisted optimization with the exception that
it uses the simulator instead of the emulator, hence the increased accuracy comes at
the expense of greater computational demands. It replaces g1,t,q(x) in Eq. 3.9 with∑N

i=1 fi,t,q(x), the total overflow volume in the catchment at time t in rainfall event
q, where fi,t,q(·) is the overflow volume in the i-th node at time t for rainfall event q
calculated by SWMM and N is the total number of nodes in the drainage network. It
replaces g2,t,q(x) in Eq. 3.11 with

∑N
i=1 1{fi,t,q(x)>0}, the number of flooded nodes at

time t in rainfall event q, where the indicator function takes value of 1 if the overflow
volume fi,t,q(·) in the i-th node is positive at time t for rainfall event q (and 0 otherwise).

In contrast to R-SO, which maximizes the weighted reduction in overflow and peak
flooded nodes and aims to obtain optimal solutions robust against various rainfall con-
ditions, DS-SO uses only design storm in the optimization step, equivalent to the one
introduced in Section 2.3.2. The solutions obtained from DS-SO are evaluated using the
8 rainfall events subsequently for comparison purposes. The settings for NSGA-II are
the same for all three optimization schemes. All experiments were run on either a Dual
Intel Xeon CPU E5-2630 v3 @ 2.40 GHz with 32 GB RAM running Microsoft Windows
8.1 (16 cores) or a Intel Xeon @ 2.4Ghz with 96 GB RAM running Microsoft Windows
10 (24 cores).

To evaluate the search quality of R-EO, R-SO, and DS-SO, three performance mea-
sures are used. They are the hypervolume indicator, generational distance, and addi-
tive ε-indicator (Reed et al., 2013). These metrics capture the convergence of the solu-
tion set (found by the optimization) with respect to a reference set, which is usually
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FIGURE 3.3: 16 rainfall events selected from the 8 rainfall clusters for
robustness analysis. The first and second set of 8 random rainfall events
are bordered by dashed and dotted lines respectively. Rainfall events

used within optimization are bordered by solid lines.

the true Pareto front. When the true Pareto front is unknown, the best known solution
set found across the three optimization schemes is used as the reference set. Hypervol-
ume measures the volume of objective space dominated by a solution set. Generational
distance measures the average Euclidean distance of each point in the solution set to
its closest point in the reference set. Additive ε-indicator measures the worst case dis-
tance (in contrast to the average distance) between the solution and reference set, and
is especially sensitive to gaps in the solution set.

3.4.4 Robustness analysis

To assess the robustness of solutions obtained from optimization, we randomly sample
two other rainfall events from each of the 8 rainfall clusters. The rainfall properties
for the events (including the events used in optimization) are given in Fig. 3.3 and
the overflow conditions for these events are given in Table 3.3. We run the Pareto-
efficient solutions obtained from the three optimization schemes (R-EO, R-SO, and DS-
SO) under these two set of 8 rainfall events each using the simulator and calculate the
overflow and peak flooded nodes reduction for each events as well as the weighted
reduction similar to Eq. 3.9 and 3.11.

3.5 Case study results

We begin by explaining how the accuracy of emulators is influenced by the number of
design data points and number of basis functions, and also explain how this accuracy



Chapter 3. Designing robust urban drainage systems: a data-driven approach 42

TABLE 3.3: Overflow volume and peak number of flooded nodes during
each rainfall event for the existing drainage system, together with the

weights of each rainfall cluster

Cluster Total overflow Peak number of flooded nodes Weights
q Opt Rand 1 Rand 2 Opt Rand 1 Rand 2 wq

1 194,959 271,430 178,463 40 20 21 0.229
2 1,357 3,448 3,628 2 6 3 0.309
3 25,758 13,336 8,279 11 5 2 0.294
4 334 330 602 1 1 1 0.024
5 1,062,597 964,427 1,216,971 55 60 47 0.025
6 1,980983 1,459,750 1,579,932 97 107 101 0.006
7 2,085,457 1,542,374 1,888,831 92 99 91 0.009
8 560,134 483,482 410,660 47 59 47 0.104

changes during the search in surrogate-assisted optimization. We then compare the
Pareto-efficient solutions obtained from surrogate-assisted optimization (R-EO) with
the Pareto-efficient solutions obtained from robust simulation-optimization (R-SO) and
design storm simulation-optimization (DS-SO). We finally look at how these solutions
perform under different rainfall events, thereby showing that our method is a viable
method to produce robust drainage systems.

3.5.1 Performance assessment of emulators

For each point in the test set, we obtain the overflow reduction time series (measured in
absolute volume reduction) for each rainfall event predicted by the emulator. We com-
pare this to the time series given by the simulator and calculate the KGE for each test
point and for each rainfall event. This is done for each setup of the emulator (i.e., for
each value of n and q). The first quartile, median, and third quartile KGE for each setup
of the emulator are illustrated in Fig. 3.4a. In general, a greater n or a greater q leads
to a better KGE although improvements in KGE are diminishing for higher values of n
and q. Beyond n = 150 and q = 7, the improvement in KGE is small. Improvements in
KGE are the most obvious for the first quartile values and not so for the median or third
quartile values, which means that some errors cannot be reduced simply by increasing
n or q.

The violin plot in Fig. 3.4b shows the distribution of KGE for the 8 rainfall events,
for different values of n, and for a fixed q = 7. For rainfall events 2, 3, and 4, KGE is
lower and shows greater variance. These are smaller rainfall events that result in small
overflow volume and few flooded nodes, as shown in Table 3.3. For the other rainfall
events, we observe decreasing variance with increasing n from n = 50 to n = 250, but
extreme values for KGE still exist for n greater than 250. The extreme values could
also be a result of the larger test set for larger n since the test set is always 10% of the
dataset. The difference in performance for the different rainfall events suggest that the
emulator may not be suitable when values vary widely across rainfall events. Using
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the first few significant basis functions (up to q = 7) can capture system response for the
larger values in the time series but may not do so adequately for the smaller values.

Fig. 3.5a shows the distribution of error for percentage overflow reduction (i.e., em-
ulated percentage overflow reduction – simulated percentage overflow reduction) for
the 8 rainfall events and the different values of n, and for a fixed q = 7. We observe
again decrease in variance with increasing n for the larger rainfall events (5-8). There
is also no bias in the predicted values. We also plot MAE and RMSE for the various
values of n and q in Fig. 3.5b and 3.5c. We see again the improvements in prediction
with increasing n or q. The RMSE values are close to the MAE values which indicate
the absence of particularly large errors. Overall, the errors of emulators appear ac-
ceptable. Although using a larger n or q decreases emulation error, an emulator with
larger n requires a longer time to construct and using an emulator with larger n or q
for surrogate-assisted optimization is more time consuming. Hence, having n ≥ 150 or
q ≥ 7 is possibly sufficient.

Performance of emulators in surrogate-assisted optimization

Although we construct emulators with q = 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, we only use
emulators with q = 3, 4, 5, 7, 10 in the surrogate-assisted optimization. This is a bal-
ance between computing time and accuracy, since if the emulator uses too few basis
functions, it is inaccurate, and if there are too many basis functions, it slows down the
optimization. Fig. 3.6 shows the RMSE of the percentage overflow reduction for the
solution set evaluated at the 1st, 10th, 50th, and 100th generation of the optimization.
For most rainfall events and also the weighted objective, RMSE tends to increase as
the search progresses. Interestingly, RMSE decreases for rainfall event 4 (and also for
rainfall event 2 and 3 in some instances). These are the small rainfall events for which
the emulator is unable to predict flood conditions accurately (Fig. 3.5a) for the test set,
which contains data points that are distributed across the decision space. However,
during the optimization, the solutions converge locally in the decision space to a re-
gion where the emulator has a higher accuracy, hence the error decreases.

RMSE changes steeply in early generations and more gradually in later generations.
This is more noticeable for each individual rainfall events rather than the weighted ob-
jectives, since the decrease in RMSE for some rainfall events cancels out the increase in
RMSE for the other rainfall events. This suggests that emulator update in the surrogate-
assisted optimization can take place early on (within 10 generations of the evolutionary
algorithm), although it is also important to ensure that the updated emulator are not
just fitted locally to allow exploration.

Fig. 3.7 shows the MBE of the percentage overflow reduction. There is an increasing
bias as search progresses which is undesirable since it means that the Pareto-efficient
solutions obtained from the surrogate-assisted optimization are underperforming when
evaluated by the simulator. However, the bias can be mitigated by using more basis
functions in the emulators. As we see from Fig. 3.6b, 3.6c, 3.7b, and 3.7c, especially in
the weighted objective panel, increasing q improves prediction of the emulator more
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than increasing n does.

Finally, we look at the quality of the solutions obtained from the surrogate-assisted
optimization by calculating the hypervolume, ε-indicator and generational distance of
the Pareto front obtained at the end of 100 generations. Fig. 3.8 shows the performance
metrics against the time taken for optimization for each setup of emulator. This time
does not count the time used to build the emulator, which we know scales linearly with
n and is not affected by q. Time taken for optimization scales linearly with q and ex-
ponentially with n. There appears to be no clear relation between complexity of the
emulator and quality of solutions obtained. Even though emulators with higher q (and
to a lesser extent, higher n) tend to produce lower error in predictions, they do not nec-
essarily give more optimal solutions (i.e., when evaluated using the simulator, the so-
lutions with high prediction error can still outperform a solution with low error). This
also suggests that the search process itself is more important than the emulator used.
Modifying the search process, such as accounting for the uncertainty in prediction to
emphasize greater exploration, might give greater benefits than trying to minimize em-
ulation error. Given the same optimization algorithm, it may not be worthwhile to use
a more complex emulator (larger n or q), hence we proceed with our analysis using a
single emulator (n = 250, q = 7) that produces relatively low error.

3.5.2 Performance of the Pareto-efficient solutions

In the following results, we perform surrogate-assisted optimization using the emula-
tor that gives the highest average KGE during the modelling phase (n = 250, q = 7) and
compare the solutions with those obtained from simulation-optimization.

Solutions from surrogate-assisted optimization

The 10 independent optimization runs of R-EO returned a total of 1,292 Pareto-efficient
solutions (as predicted by emulator). The solutions were then evaluated by SWMM
and the results are plotted in Fig. 3.9. The cost of solutions ranges from $0.2 million to
$45 million with the most expensive alternatives guaranteeing a reduction in weighted
overflow volume and weighted peak flooded nodes up to 45% and 21% respectively.
Although the emulator predicts overflow reduction in the range of 20% to 49%, when
evaluated by the simulator this objective ranges from 16% to 45%. For flooded nodes
reduction, the emulator predicts values from 8% to 20% but the simulator gives values
from 0.2% to 21%.

The positive bias between the emulated and simulated objective values is small for
low cost solutions but increases as the cost of solutions increase and stays fairly con-
stant beyond the kink in the Pareto front at around $5 million. This kink in the Pareto
front is similar to the results in Fig. 2.6. Before this point, with a limited budget, invest-
ment goes towards pipe expansions and beyond this point, investment goes towards
LID implementation. The increasing bias in solutions below this kink means that it be-
comes increasingly harder for the emulator to predict accurately when there are more
changes in pipe inputs. Similarly, the constant bias observed in solutions above the
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FIGURE 3.6: Root mean square error (RMSE) of percentage overflow re-
duction for test set (0th generation) and solutions obtained during 1st,
10th, 50th, and 100th generation of surrogate-assisted optimization (a) us-
ing emulators with different n and q; (b) using emulators with n = 250;

and (c) using emulators with q = 7.
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FIGURE 3.7: Mean bias error (MBE) of percentage overflow reduction for
test set (0th generation) and solutions obtained during 1st, 10th, 50th, and
100th generation of surrogate-assisted optimization (a) using emulators
with different n and q; (b) using emulators with n = 250; and (c) using

emulators with q = 7.
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FIGURE 3.8: Performance metrics against time taken for surrogate-
assisted optimization using emulators of different n and q

kink suggests that it is relatively easier for the emulator to predict changes in system
response due to increasing LID implementation.

Comparison with simulation-optimization

Fig. 3.10 shows the Pareto-efficient solutions obtained from the three optimization
schemes: R-EO, R-SO, and DS-SO. The best performing optimization scheme is R-SO.
This is an expected result since it evaluates solution performance under 8 rainfall events
using the simulator during optimization. Pareto front obtained from R-EO and DS-SO
are similar but differ in two main ways. First, for flooded nodes reduction (Fig 3.10b),
no solution from DS-SO is able to attain flooded nodes reduction up to 20% unlike solu-
tions from R-EO or R-SO. Second, some solutions from DS-SO, especially the low cost
one, deteriorate in performance when evaluated using the 8 rainfall events that have
intensities, duration, and profiles differing from the design storm. When evaluated us-
ing the design storm, the Pareto front does not have any gaps as shown in Fig. 3.11, but
because these solutions are designed specifically for the design storm, some of them
are not robust against other rainfall events, hence resulting in gaps in the Pareto front
(see Fig. 3.10a and 3.10b). For solutions obtained from R-EO, although evaluating with
simulator causes performance to deteriorate, none of the solutions have emulated ob-
jective values with exceptionally high positive bias, thus there is no major gaps in the
Pareto front obtained from R-EO.

Fig. 3.12 compares the three optimization schemes according to hypervolume, ε-
indicator and generational distance. The individual trial for R-SO or DS-SO refers to
each run that is initiated using a different random seed while the combined trial refers
to the combined Pareto front obtained from the 10 individual trials. Only the com-
bined trial is available for R-EO since the Pareto front is computed using the emulated



Chapter 3. Designing robust urban drainage systems: a data-driven approach 50

0

10

20

30

40

50

0 20 40 60
Overflow reduction (%)

C
os

t (
m

ill
io

ns
)

Evaluation

R-EO (GP)

R-EO (SWMM)

5

10

15

20

Flooded nodes 
reduction (%)

FIGURE 3.9: 1,292 Pareto-efficient solutions from R-EO. The three objec-
tives are represented by the axes (weighted overflow reduction and cost)
and color (weighted reduction in the number of peak flooded nodes).
Solutions are evaluated using the emulator (grey border points) during
optimization and evaluated using the SWMM simulator (black border

points) post optimization.

objectives before evaluation using SWMM. Here, we see that R-SO is the best perform-
ing, followed by R-EO, and followed lastly by DS-SO. The gaps in the Pareto front
obtained using DS-SO result in the lower performance which is particularly prominent
when measured by ε-indicator and hypervolume as these two metrics are more easily
affected by gaps. Interestingly, there is better performance in the early generations for
individual trials of DS-SO in terms of ε-indicator and hypervolume. This is because in
the early generations, there are more ‘random’ solutions that are not designed for the
design storm and happen to perform well for other rainfall events. This is also why
the early generations for the combined trial does not show the same trend, since it only
includes the Pareto-efficient solutions from the individual trials. This trend can also be
observed for R-EO for the ε-indicator metric, also for the reason that in early genera-
tions there can be more ‘random’ solutions that actually perform well in the simulator
but are later on eliminated as they are predicted to perform poorly by the emulator. We
also note that the optimization search converges early for R-EO, and is close in perfor-
mance to individual trials of R-SO only in early generations (<15). This suggests that
an update of emulator could potentially reinvigorate the search such that performance
of R-EO will not stagnate.

Finally, we compare the time taken to perform the three optimizations, including
the time needed for simulations to construct the emulator prior to optimization and
also to evaluate solutions using the simulator post optimization for R-EO (Fig. 3.13).
Simulation time using SWMM takes about 4-10 seconds depending on the rainfall dura-
tion for one solution and for a single rainfall event. A single trial of DS-SO takes around
32 computation hours and thus the time needed for 10 trials is around 320 hours. In
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comparison, 10 trials of R-EO take only 4.4 computation hours. The time consuming
component of R-EO is not the optimization but the simulations required to construct
the emulator (7 hours) and to evaluate the solutions (30 hours). R-SO on the other
hand requires 536 hours just for a single trial since it evaluates each solution through
8 different rainfall events and has to perform 20,000 function evaluations during opti-
mization. The advantage of R-EO over DS-SO is evident here, since it provides time
savings by a factor of 7 and also yields better solution. The comparison between R-EO
and R-SO is harder to make since the quality of solutions obtained for the two schemes
is only comparable in the early generations. While a single run of R-SO to roughly
13 generations takes about the same time as R-EO, the potential that R-EO has is that
computation resources can be reallocated to make this method more efficient. Since
the current R-EO adopts a basic sequential framework, all resources are spent on the
initial DoE to construct the emulator, thus if some computation resources can be used
to update the emulator during optimization, better solutions can be obtained using the
same time needed for emulation and optimization (note that the post evaluation will
always take roughly the same time).

3.5.3 Robustness analysis

Fig. 3.14 shows the cumulative distribution of performance (i.e., overflow reduction
and peak flooded nodes reduction) across the 16 random rainfall events used for ro-
bustness analysis for all Pareto-efficient solutions obtained from R-EO, R-SO, and DS-
SO. Note that the cumulative distribution here refers to weights, defined in Eq. 3.10,
and not probability, such that rainfall events with larger flood or higher frequency have
higher weights. This is consistent with the earlier cumulative distribution plots in Fig.
2.8. Each line in the plot represents a solution and a solution has better performance
if it lies as far to the left as possible; this is also why we see expensive solutions (in
green-blue) lying closer to the left. For example, if a line passes through the point (50%,
0.6), it can be interpreted as a solution achieving a reduction greater than or equal to
50% for 0.6 (in terms of accumulated weights) of the random rainfall events.

From Fig. 3.14a, we see that some solutions obtained from DS-SO are less robust
against the wide range of rainfall conditions represented by the random set of rainfall
events. Consider the horizontal line y = 0.5, solutions obtained from R-EO or R-SO in-
tersect this line at 50-70% overflow reduction but there are solutions from DS-SO that
attain less than 40% overflow reduction. For R-EO and R-SO, from y = 0 to y = 0.6, the
solutions lie close together and difference in performance is a result of different cost of
the solutions. Beyond y = 0.6, solutions are more scattered with some solutions devi-
ating to the right, underperforming compared to solutions of similar cost. This is most
apparent in the plot for DS-SO, since the solutions are designed for the design storm
and some of them are unable to perform well in the rainfall events that are sampled.
Similar insights can be drawn from Fig. 3.14b although it may be less apparent since
peak number of flooded nodes takes on discrete values and solutions have overlapping
lines.
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FIGURE 3.10: Comparison of Pareto-efficient solutions from DS-SO, R-
EO, and R-SO in terms of (a) cost against weighted overflow reduc-
tion; (b) cost against weighted peak flooded nodes reduction; and (c)
weighted overflow reduction against weighted peak flooded nodes re-
duction. For DS-SO, solutions are Pareto-efficient for the design storm
and are not necessarily optimal when evaluated using the weighted ob-

jectives.
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FIGURE 3.11: 627 Pareto-efficient solutions from R-SO. The three objec-
tives for DS-SO are represented by the axes (overflow reduction and cost)
and color (reduction in the number of peak flooded nodes). These solu-

tions are designed specifically for the design storm.

Table 3.4 shows the hypervolume of the Pareto front for the three optimization
schemes for the two set of random rainfall events sampled. The hypervolume is calcu-
lated for each of the 8 rainfall events and also for the weighted objectives. The rainfall
events are arranged in order of increasing severity of overflow caused. We note that al-
though DS-SO attain a higher hypervolume for the weighted objectives, this is largely
due to the poor performance for Rainfall Event 2 for both R-EO and R-SO. In fact, the
overflow or flooded nodes reduction attained by all solutions for Rainfall Event 2 is
quite similar. Another issue is that the decision variables selected for optimization are
not suited to reduce overflow in a small rainfall event as highlighted in Section 2.4.2.
We shall resolve this issue in the next chapter when we include the stochastic rainfall
events into sensitivity analysis so that we select decision variables that target a wide
range of rainfall conditions prior to optimization. If we look at the larger rainfall events
(i.e., Rainfall Event 5-8), we notice that solutions from DS-SO underperforms. This can
be expected for the largest rainfall events (Rainfall Event 6 and 7) since they are more
intense than the design storm. However for Rainfall Event 5 and 8, they are less intense
than the design storm but have a longer duration. Solutions from DS-SO underperform
for such events, consistent with what is illustrated in Fig. 2.9 in the previous chapter.
For the even smaller rainfall events (Rainfall Event 1 and 3), we also see that solutions
from DS-SO do not perform as well as those from R-EO or R-SO although the margin
is smaller. Lastly, we note that solutions from R-EO does not perform as well as R-
SO. This is expected due to the emulation error but the inclusion of stochastic rainfall
events during optimization does allow us to obtain solutions that perform well across
a wide range of rainfall conditions.
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FIGURE 3.12: (a) Hypervolume, (b) ε-indicator, and (c) generational dis-
tance of solution set as optimization progresses for DS-SO, R-EO, and
R-SO. Individual trial refers to each run that is initiated using a differ-
ent random seed while the combined trial refers to the combined Pareto

front obtained from the 10 individual trials.
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TABLE 3.4: Hypervolume of solutions from DS-SO, R-EO, and R-SO for random
rainfall event set 1 (left) and set 2 (right)

Set 1 DS-SO R-EO R-SO
Event 4 0.97 1 0.99
Event 2 0.99 0.58 0.87
Event 3 1 1.02 1.03
Event 1 1 1.03 1.03
Event 8 0.75 1.09 1.12
Event 5 0.96 1.09 1.1
Event 6 0.75 1.06 1.17
Event 7 0.47 0.93 1.08
Weighted 0.97 0.8 0.95

Set 2 DS-SO R-EO R-SO
Event 4 0.94 0.89 1
Event 2 0.97 1 0.98
Event 3 0.9 0.95 1
Event 1 0.97 0.95 1
Event 8 0.98 0.99 1.01
Event 5 0.96 1.03 1.05
Event 6 0.76 1.01 1.07
Event 7 0.6 0.96 1.04
Weighted 0.59 0.46 0.54

Note that 2 random rainfall events are selected from each of the 8 clusters,
which give rise to the 2 set of events.

Note that the reference set to calculate hypervolume is the best known solution
set found across the three optimization schemes for the weighted objectives.
Hence for the individual rainfall events, the solution set from the different
optimization scheme may be better than this reference set, hence hypervolume
can exceed 1 in such cases.
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FIGURE 3.14: Cumulative distribution for (a) overflow reduction and (b)
flooded nodes reduction for the 16 random rainfall events selected. Note
that the x-axis is inverted so that it proceeds in the direction of degrading

performance from left to right.
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3.6 Conclusion

Designing urban drainage systems robust against various rainfall conditions is critical
for cities. The use of design storms in the planning of urban drainage systems, al-
though widely used, may not always be effective in producing robust drainage design.
Our work introduces stochastic rainfall events into the optimization phase and uses
surrogate-assisted optimization to derive solutions robust against these events using
limited computational resources. The application of our computational framework to
the Nhieu Loc-Thi Nghe basin reveals a few insights that answer the questions we set
out with:

• Solutions optimized for stochastic rainfall events can perform better in a wider
range of rainfall conditions compared to solutions optimized only for the design
storm. This is more apparent in rainfall events that have large rainfall volumes
even if the rain intensity could be smaller than the design storm. Although solu-
tions optimized for stochastic rainfall events can also underperform under small
rainfall events, this can be explained by the inadequate selection of decision vari-
ables for optimization. This prompts the use of stochastic rainfall events prior to
optimization in the selection of decision variables.

• By including stochastic rainfall events into the optimization process, computa-
tional demand multiplies but surrogate-assisted optimization provides a feasible
alternative to simulation optimization by reducing time needed at the expense
of some accuracy. Surrogate-assisted optimization is 7 times (approximately 250
hours) faster than simulation optimization using design storm and 129 times (ap-
proximately 5000 hours) faster than the robust simulation optimization setup us-
ing stochastic rainfall events. However, its performance is only comparable to
robust simulation optimization in the early generations of the evolutionary algo-
rithm, thus suggesting that computational resources can be reallocated to update
the surrogate model during optimization.

• The emulator used in our work here shows increasing accuracy with larger num-
ber of design data points (n) and greater number of basis functions (q) but the
increase in accuracy is diminishing for larger values of n and q. More impor-
tantly, when the emulator is used within surrogate-assisted optimization, the ac-
curacy of the emulator does not appear to correlate highly with the quality of the
designed solutions.

Overall, this part of the thesis suggests that optimizing using stochastic rainfall
events rather than just design storms can yield urban drainage systems that are more
robust against a wide range of rainfall conditions. To deal with the increased compu-
tational demand, surrogate-assisted optimization is a viable option. While the results
here are specific to our case study, the computational framework is not catchment spe-
cific and can be readily applied to other catchments. We expect similar conclusions for
other catchment models although one might expect varying degrees of success. The ef-
fectiveness of adding stochastic rainfall events largely depends on how effective (or in-
effective) the design storms are for the catchment model and the time savings promised
by surrogate-assisted optimization depend on the time required for a single simulation
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(i.e more time savings expected if the original function is more time consuming).

Although surrogate models for urban drainage simulator have been developed,
they have not been used for optimization before. The work here is a first attempt at
using surrogate-assisted optimization to design for robust urban drainage. Further
research in this direction can also benefit developing cities in the planning of robust
drainage design under climate change or population growth. In this chapter, since we
only experiment on an emulator with 5 inputs, it is easier to interpret our findings but
more difficult to realize a greater extent of overflow reduction. In the next chapter, we
will explore how our framework can be scaled to solve problems of higher dimensions.
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Chapter 4

Scalability of emulator for the
robust design of urban drainage
systems

4.1 Introduction

In the previous chapter, we set out to design robust urban drainage systems by replac-
ing the design storm with stochastic rainfall events during the optimization process
(and with the aid of emulators). Since the main goal was to test out the methodology,
we limited the problem to a 5-dimensional decision space. In this chapter, we explore
the possibility of scaling our computational framework to a higher dimensional prob-
lem (i.e., greater number of decision variables). While we acknowledge the caveat that
the emulator may be less accurate for a higher dimension problem, we want to find out
the extent to which surrogate-assisted optimization can allow us to design robust urban
drainage systems in more practical setting. In this chapter, we thus aim to answer the
following questions: (1) How does the accuracy of the emulators change with problems
of increasing complexity?; and (2) How effective is surrogate-assisted optimization in
producing robust urban drainage solutions for higher dimensional problems?

To do this, we adopt the computational framework in Chapter 3 but introduce two
main modifications. First, instead of the design storm, we use a set of representative
rainfall events generated from the stochastic rainfall analysis in the sensitivity anal-
ysis. In this way, the sensitivity analysis identifies variables that reduce overflow in
various rainfall events rather than just the design storm. Second, we select a new set
of 20 decision variables from the aforementioned sensitivity analysis. We then build
the emulator for the higher dimensional decision space using the new inputs and use
surrogate-assisted optimization to obtain the optimal configuration of these new 20 de-
cision variables.

The computational framework presented in this chapter represents a culmination
of efforts to improve the methodology for the design of robust urban drainage sys-
tems. Here, we deviate from the common practice of using design storms, relying on
stochastic rainfall events in both sensitivity analysis and optimization. To deal with the
increased computational demands, surrogate-assisted optimization is used instead of
simulation-optimization. To evaluate how our proposed methodology holds up against
current design practices, we applied the framework to the Nhieu Loc-Thi Nghe basin
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and compare the solutions obtained from this proposed framework to the solutions
obtained in Chapter 2, in which the design process is solely based on design storms.

4.2 Computational framework

The computational framework for this chapter consists of 5 steps, illustrated in Fig.
4.1. We begin with the stochastic rainfall analysis, with which we generate a set of
rainfall events representative of the range of rainfall intensities, duration, and profiles
of rainfall events occurring in the catchment. Next, we conduct sensitivity analysis
to select a set of decision variables that targets overflow reduction for the representa-
tive rainfall events found in the previous step. To reduce the additional computational
demands brought about by the inclusion of stochastic rainfall events, we modify the
sensitivity analysis by partitioning and screening the variables. We then build an em-
ulator based on the selected set of decision variables, and use the emulator within the
surrogate-assisted optimization. The optimization seeks Pareto-efficient solutions that
minimize the investment costs while maximizing the reduction in both overflow vol-
ume and flooded nodes during the representative rainfall events. We compare our so-
lutions obtained from surrogate-assisted optimization with the solutions obtained from
the design storm simulation-optimization performed in Chapter 2. We finally evaluate
the robustness of solutions obtained from the two optimization schemes by simulating
these solutions under unobserved stochastic rainfall events.

With the exception of Step 2 (modified sensitivity analysis), the other steps have
been explained in Section 3.4. We next explain the modified sensitivity analysis in detail
and describe the setup for the emulation and optimization step for this framework.

4.2.1 Modified sensitivity analysis

From Chapter 2 and 3, we found that the Pareto-efficient solutions failed to reduce
overflow adequately even for small rainfall events and one of the reasons was due to
the inadequate selection of decision variables for optimization. In those optimization
setup, decision variables were selected for their performance at reducing overflow dur-
ing the design storm using sensitivity analysis (Section 2.3.1), hence they tend to be in
the areas that experience severe overflow during the design storm. However, for a large
watershed, such as the Nhieu Loc-Thi Nghe basin, overflow can occur at different ar-
eas during different rainfall events, which may not necessarily coincide with the severe
overflow areas during the design storm. Thus, flood may persist in different areas if
decision variables are selected only based on the design storm. Therefore, stochastic
rainfall events have to be included during sensitivity analysis for a comprehensive se-
lection of decision variables.

We thus use the 8 representative rainfall events identified in Section 3.4.1 in the sen-
sitivity analysis. As a result, computational demands will increase by around 8 times
because it scales linearly with the number of rainfall scenarios. However, it is inefficient
to consider the entire original decision space, which consists of 308 pipe variables and
12 LID variables, since pipe expansion or LID implementation at a one location cannot
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1. Stochastic Rainfall Generation

2. Modified
sensitivity analysis

4. Surrogate-assisted
optimization

5. Robustness
analysis 

Rainfall Data Set of all 
decision variables

Reduced set
of decision
variables

Pareto-efficient solutions

Rainfall events obtained
from 10 years rainfall series

Model joint distribution
of rainfall intensity and
duration using copula

Model storm profile
by Huff's method

Sample rainfall events

Robust solutions

3. Design of emulators

k-means clustering 

Representative rainfall events
(cluster centroids)

Random rainfall events from
each cluster

Emulator

FIGURE 4.1: Flowchart of the computational framework, consisting of
5 main steps: 1) stochastic rainfall generation to select rainfall events
that are representative of a wide range of rainfall intensities, duration,
and profiles; 2) sensitivity analysis to select decision variables for em-
ulation and optimization; 3) design of emulators to construct GP em-
ulator that approximate SWMM; 4) surrogate-assisted optimization to
obtain Pareto-efficient solutions that performs well across the represen-
tative rainfall events; 5) robustness analysis to evaluate the performance
of the solutions for random rainfall events. The key difference between
this framework and the one in Fig. 3.1 is highlighted in red. Multiple
rainfall events, instead of the design storm, are used in the modified

sensitivity analysis.
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alleviate the overflow at a distant location. This is especially true for the smaller rain-
fall events that cause overflow in a limited number of nodes. We thus implement a pre-
processing step before the sensitivity analysis in which we first cluster the nodes (i.e.,
the manhole of the drainage system) of the catchment according to the flow conditions
during each rainfall event, and perform sensitivity analysis using decision variables in
clusters that account for large overflow volumes.

For each rainfall event, we want to cluster the 227 nodes in the catchment model
according to the flow conditions of each node. We first simulate the catchment model
using SWMM under the existing drainage system. Each node is then represented by
the concatenated time series of overflow (as a ratio of total overflow in the catchment
at that time instant) and depth (as a ratio of maximum depth of the node). We then use
hierarchical time series clustering (Legendre and Legendre, 2012) to form the clusters
of nodes. Here, we use an agglomerative clustering technique that treats each node as
a separate cluster initially and merges clusters that are the most similar until a single
cluster is formed. An advantage of this clustering technique is that we can perform
an ex-post selection of the number of clusters instead of having to define it a priori.
Another advantage is that we can easily add additional conditions to the clustering
such that only clusters that are adjacent (i.e., the clusters of nodes are linked by at least
one common pipe) can merge. This is done out of theoretical considerations such that
the resulting cluster of nodes have similar flow conditions during the rainfall event
because they are physically connected. Distance between each cluster is measured by
the Euclidean distance between the time series vector. Clusters are merged according
to the complete linkage criteria, which defines the distance between cluster using the
furthest distance between a pair of nodes in different clusters. We select the number
of clusters by considering the size of the largest cluster and also the Davies-Bouldin
Index (DBI) (Davies and Bouldin, 1979), which favors high within-cluster similarities
and high between-clusters differences. Fig. 4.2 illustrates the clusters obtained by using
hierarchical clustering on Rainfall Event 1. For the clusters obtained in the remaining 7
rainfall events, please refer to Appendix C.

We carry out elementary effect test (EET) (Pianosi et al., 2016) for each of the rep-
resentative rainfall events independently to identify the most influential variables that
can reduce overflow volume for the specific event. Similar to Section 2.3.1, the output
considered is the reduction in total overflow volume. Instead of considering all the
diameters of 308 pipes and area of the 12 LIDs as the input factors (as in Section 2.3.1),
we only consider the pipes and LID variables within ’important’ clusters. The ’impor-
tant’ clusters are found by ranking the clusters obtained from hierarchical clustering
according to the overflow volume per node in decreasing order, and selecting the clus-
ters until they cover at least 90% of the overflow volume for that rainfall event. In this
way, we discard clusters that are distant from overflow locations or are less likely to
contribute to overflow reduction. Taking advantage of the clusters, we then implement
a slightly modified version of EET. In the original EET, inputs factors of the simulation
model are perturbed one at a time from multiple points within the input space. Global
sensitivity is measured by taking the mean of the elementary effects, namely the local
derivatives of the output with respect to an input. In our modified version, given N
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FIGURE 4.2: Nodes with overflow (represented by colored nodes in the
left plot) and the resulting 9 clusters obtained using hierarchical cluster-
ing (right) for Rainfall Event 1. Each cluster is represented by a different
color in the plot on the right. The nodes and pipes represent the man-

holes and pipes of the drainage system.

’important clusters, we perturb N inputs factors at a time (one from each cluster). We
then attribute overflow changes within each cluster to the input factor that is perturbed
within that cluster. The assumption here is that the effect of inputs on a different cluster
is limited. For EET, a total of r(M + 1) evaluations is needed, where M is the number
of factors and r the number of elementary effects. In this instance, r = 100 — a choice
made in Section 2.3.1. M is then the size of the largest ’important’ cluster, which in our
case, corresponds to 80, 34, 81, 31, 31, 45, 44, and 44 for the 8 rainfall events respectively.
This marks a reduction in simulations required since M = 320 if all inputs are included.

Finally, for each rainfall event, we rank the inputs according to the mean elementary
effect, selecting the top inputs that are most influential in reducing overflow. We then
take the union of the set of inputs such that we have a total of 12 pipe variables selected
for optimization. Table 4.1 lists the properties of the 12 pipe variables. Compared to
Table 2.2, 3 of these variables are different from the variables identified using sensitivity
analysis with the design storm only. 8 LID variables are also selected for optimization,
as we want to keep the same number of LID and pipe variables for optimization as
in Chapter 2. Properties of the LID variables are listed in listed in 2.3. For additional
figures and details of the sensitivity analysis, please refer to Appendix C.

4.2.2 Design of emulators

We now construct the urban drainage emulator in the same way as described in Section
3.3 and 3.4.2 with the key difference that we are now using 20 inputs identified from
sensitivity analysis instead of 5. This may have an impact on the emulator accuracy
as the emulator has not been tested on problems with 20 inputs. Carbajal et al., 2017,
who developed the emulation approach, has applied the emulator to problems up to 8
inputs. As a result, we need to reconsider the design of experiment and ensure that the
accuracy of the emulator is acceptable.
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TABLE 4.1: Description of the pipe variables selected from modified sensitivity analysis

Decision
variable, xj

Pipe no. Shape Length, lj (m) Size, dj (m) Maximum
size (m)

x1 1 Rectangular closed 546 2.5 x 2.5 4
x2 3 Circular 510 1.2 2.2
x3 4 Circular 180 1 2
x4 5 Rectangular closed 840 1.5 x 2.8 4
x5 6 Rectangular closed 600 1.2 x 2 4
x6 8 Rectangular closed 540 0.8 x 5 4
x7 9 Rectangular closed 551 1.2 x 5 4
x8 11 Rectangular open 610 2.7 x 10 4
x9 12 Rectangular closed 900 1.8 x 4 4
x10 13 Circular 450 0.6 2
x11 14 Rectangular closed 827 2 x 6 4
x12 15 Rectangular open 1250 3.5 x 20 4.5

Maximum size refers to the maximum diameter for circular pipes and maximum
depth for rectangular pipes. It corresponds to the maximum size of an existing pipe
of the same shape or 1 m larger than the original size, whichever is bigger. Width of
rectangular pipes are unchanged during optimization.

Pipe no. 13-15 are the new additions; they were not selected when sensitivity analysis
was performed using the design storm.
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For Gaussian process (GP) regression, Jones, Schonlau, and Welch, 1998 suggest
that a general rule of thumb for the size of the initial design of experiment (DoE) is to
have number of design points, n = 10D, where D is the dimension of the input space.
Loeppky, Sacks, and Welch, 2009 find that n is dependent on the sensitivity (τ ) and
sparsity (ψ) of the inputs in a GP model. Sensitivity is defined as τ =

∑
θj , and spar-

sity is defined as ψ =
∑
θ2j , where θj is the fitted parameter of the GP model for input j

where j = 1, ..., D. A high θ indicates that the input is active and strongly influences the
response, so a high sensitivity means that there are many active inputs. A high sparsity
means that the the sensitivity does not spread equally across the D inputs, such that
some are inactive inputs (low θ) and some are active inputs. Experimenting with D
ranging from 4 to 20, Loeppky, Sacks, and Welch, 2009 find that if sensitivity is small
(τ < 10), then n = 10D is possible. Even if sensitivity is high (τ > 20), if sparsity is
also high, then it is still sufficient to use n = 10D. In other words, for high dimensional
problems, if only a few inputs are active and strongly influence the response, then the
problem can still be tractable with n = 10D simulation runs to construct the GP model.

We investigate the feasibility of building emulator for our 20-D problem. We con-
struct emulators using different size of design data set (n = 50, 100, 150, 200, 250, 300,
400, 500) and different number of features of the system response (q = 1, 2, 3, 4, 5, 7,
10, 15, 20, 25). We measure the accuracy of our emulators using KGE, MBE, MAE, and
RMSE, defined in Eq. 3.5 to 3.8.

4.2.3 Surrogate-assisted optimization

After constructing the emulator, we use it in the surrogate-assisted optimization to
identify the optimal drainage configurations for the 20 decision variables . The setup
is the same as the one described in Section 3.4.3 except that the number of generations
is increased from 100 to 250. This is the same number of generations used for the
design storm simulation-optimization with 20 decision variables in Section 2.3.2. To
make a distinction between this setup and the one in Section 3.4.3, we refer to this
surrogate-assisted optimization as ’R-EO-20’. We compare solutions obtained from R-
EO-20 with the Pareto-efficient solutions obtained from the simulation-optimization in
Section 2.3.2, which we will refer to as ’DS-SO-20’. Lastly, we compare the robustness of
the solutions obtained from R-EO-20 and DS-SO-20 by simulating the solutions under
16 different random rainfall events identified in Section 3.4.4 and listed in Table 3.4,
which are unobserved during the optimization process.

4.3 Case study results

We begin by assessing the accuracy of emulators built for a 20-dimensional input space.
Next, we describe the Pareto-efficient solutions obtained from the surrogate-assisted
optimization (R-EO-20) and compare them with the solutions obtained from simulation-
optimization (DS-SO-20). Finally, we evaluate the robustness of these solutions by
comparing their performance under a wide range of rainfall events to determine if
our proposed framework (represented by R-EO-20) can be more effective than current
practices (represented by DS-SO-20) in deriving robust urban drainage systems.
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4.3.1 Performance assessment of emulators

Fig. 4.3 shows the KGE of the overflow reduction time series predicted by the emula-
tors for different values of n and q. Compared to the emulators constructed for the 5-D
input space (Fig. 3.4), we notice the similarity that higher n and q give higher KGE.
However, there are three differences between the emulators constructed for the 20-D
and 5-D problems. First, the improvement in KGE for increasing n is not as obvious
for the 20-D emulator as can be seen by the overlapping lines for n ≥ 100. Second,
the KGE is higher and the variance in KGE is smaller (Fig. 4.3b). However, this can
be partially attributed to the larger absolute value in overflow reduction for the 20-D
problem. Third, the 20-D emulator yields significantly better performance for Rain-
fall Event 4. This is likely because in the 5-D emulator, none of the inputs are close
to the overflow location for this small rainfall event, but for the 20-D emulator, pipe
expansion near the overflow location is possible. Hence, it becomes easier to predict
overflow reduction now, since changes in some of the 20 inputs strongly influence the
output response. This means that emulators performance may not necessarily degrade
with increasing dimension of input space. Given the same size of design data set, the
response surface (i.e., the relationship between the inputs and output) largely deter-
mines the performance of the emulator.

Fig 4.4 illustrates the error distribution, MAE, and RMSE of percentage overflow
reduction predicted by the 20-D emulator. This is an aggregated output derived from
the overflow time series that is predicted. There are two main differences with the 5-D
emulator. Firstly, the error is higher and secondly, the error decreases more rapidly
with increasing number of basis function, q. Although some regions of the response
surface might be easier to predict now (e.g. Rainfall Event 4), the overall accuracy of
emulator for the aggregated output is lower due to the higher dimension.

We eventually choose to use the emulator with n = 250 and q = 7 in the surrogate-
assisted optimization. This is the same choice as in Chapter 3 because given the error
plots, there is no strong reason to deviate from this choice. Table 4.2 gives the sensitivity
and sparsity of the seven GP models (one for each basis function) used to build the
emulator that predicts overflow time series. Recall that in this emulation approach, the
time series to be predicted is first decomposed into q basis functions, and one GP model
is needed for each basis function. For q = 7, seven GP models are needed. For each GP
model, either sensitivity is low or sparsity is high, meaning that there are always a few
strong inputs that influence the output, making prediction with GP regression easier.
According to the recommendation in Loeppky, Sacks, and Welch, 2009, this makes a
design data set of n = 10D, suitable even for a high dimension problem like the one
considered here.

Performance of emulators in surrogate-assisted optimization

Fig. 4.5 shows how the error of the emulator propagates as the surrogate-assisted op-
timization search progresses for 250 generations. It shares similarities with the error
plots for the 5-D surrogate-assisted optimization (Fig. 3.6 and 3.7): one, there is an
increasing bias as search progresses for all events, except Rainfall Event 4; and two,
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FIGURE 4.3: (a) Statistics of KGE of overflow reduction (by volume) time
series predicted by emulators with different n and q. (b) Distribution of
KGE of overflow reduction time series for the 8 rainfall events predicted
by emulators with different n and q = 7. Emulators are constructed for

20 input variables.
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FIGURE 4.4: (a) Distribution of errors of percentage overflow reduction
for the 8 rainfall events predicted by emulators with different n and q =
7. (b) Mean absolute error (MAE) and (c) root mean square error (RMSE)
of percentage overflow reduction predicted by emulators with different

n and q. Emulators are constructed for 20 input variables.
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TABLE 4.2: Sensitivity and sparsity of emulator with n = 250 and q = 7

Basis function 1 2 3 4 5 6 7

Sensitivity (τ ) 5.59 10.87 11.3 12.43 13.47 13.83 20.06
Min. sparsity (τ2/D) 1.56 5.9 6.38 7.73 9.07 9.56 20.13
Max. sparsity (τ2) 31.24 118.09 127.58 154.6 181.47 191.24 402.55
Sparsity (ψ) 5.64 20.9 21.04 22.8 42.9 25.23 178.16

Minimum sparsity is calculated by assuming sensitivity is spread equally among
all inputs. Maximum sparsity is calculated by assuming all but one input are
inactive.

error increases rapidly in the earlier generations. The difference between the 5-D and
20-D surrogate-assisted optimization is that error for the higher dimensional problem
is larger (12.5% for RMSE and 10.2% for MBE compared to the range of 3-8% for RMSE
and 1-7% for MBE obtained by the 5-D surrogate-assisted optimization). This can be
explained by the larger decision space of the optimization problem, and hence a higher
likelihood for the search to be directed to a region where the emulator wrongly predicts
that solutions are optimal. This indicates that even when the emulator may not have a
high error for a high dimensional input space, caution must be taken during surrogate-
assisted optimization as the error can increase more during the search process for a
high dimensional problem compared to a lower dimensional one.

4.3.2 Performance of Pareto-efficient solutions

We now look at the Pareto-efficient solutions obtained using surrogate-assisted op-
timization (R-EO-20) and compare them to the solutions obtained from simulation-
optimization (DS-SO-20).

Solutions from surrogate-assisted optimization

The 10 independent optimization runs of R-EO-20 returned a total of 765 Pareto-efficient
solutions (as predicted by the emulator). Fig. 4.6 shows the Pareto front when evalu-
ated by the simulator (SWMM) and emulator. The solutions cost up to $80 million
and they attain weighted overflow reduction up to 84% and weighted peak number of
flooded nodes reduction up to 42%.

We notice a kink in the Pareto front at around the $10 million mark, where so-
lutions exhibit smaller increase in overflow reduction for increasing cost beyond this
point. This is similar to the plots observed for other optimization setup in Fig. 2.6 and
3.10a. The kink is attributed to the switch in investing in LID instead of pipe expansion.
However, when evaluated using the simulator, a gap appears such that no solution has
overflow reduction between 51% and 60%. Furthermore, we see that the positive bias
between the emulated and simulated objective values is larger for the less expensive
solutions on the left of the gap. This runs contrary to the 5-D surrogate-assisted op-
timization (R-EO) (Fig. 3.9), where the bias is larger for cheaper solution. For R-EO,
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FIGURE 4.5: (a) Distribution of errors of percentage overflow reduction
for the 8 rainfall events for the solutions obtained at the 250th genera-
tion. (b) Mean bias error (MBE) and (c) root mean square error (RMSE)
of percentage overflow reduction for test set (0th generation) and solu-
tions obtained during 1st, 2nd, 4th, 7th, 10th, 20th, 50th, 100th, 150th, 200th

and 250th generation of surrogate-assisted optimization (R-EO-20) using
emulator with n = 250 and q = 7.
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FIGURE 4.6: 765 Pareto-efficient solutions from R-EO. The three objec-
tives are represented by the axes (weighted overflow reduction and cost)
and color (weighted reduction in the number of peak flooded nodes). So-
lutions are evaluated using the emulator (grey border points, left) during
optimization and evaluated using the SWMM simulator (black border

points, right) post optimization.

solutions less than $5 million (where the kink is) has mean bias error (MBE) of 2.3%
and solutions more than $5 million has MBE of 4.8%. For R-EO-20, the less expensive
solutions to the left of the gap have MBE of 15.6% and the expensive solutions have
MBE 5.7%. This suggests that the high dimensionality of the optimization problem
has partially prevented the emulator to find low cost solutions that are truly Pareto-
efficient. It is likely that solutions to the right of the gap are closer to the true Pareto
front. Solutions between $10 to $18 million that have overflow reduction greater than
61% are the most important to decision makers since they are low cost solutions that
have markedly better performance at alleviating overflow.

Comparison with simulation-optimization

Fig. 4.7 illustrates the Pareto-efficient solutions obtained from R-EO-20 and DS-SO-
20, that are evaluated using SWMM. We observe that solutions from R-EO-20 clearly
outperforms solutions from DS-SO-20 when the cost of solutions is above $10 million.
This is due to the better selection and optimization of decision variables as multiple
rainfall events are included during the sensitivity analysis and optimization steps for
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R-EO-20. Notice that above $10 million, the gap between R-EO-20 and DS-SO-20 re-
mains constant. Since investments are directed to LID implementation when cost goes
beyond $10 million, it means that LID does not contribute to the advantage that R-EO-
20 solutions have. The optimal pipe configuration attained at the $10 million mark for
R-EO-20 is responsible for the gap we see between the the two sets of solutions. When
investment cost falls below $10 million, solutions from both optimization schemes are
comparable. Although one reason for this observation is due to the emulator inaccu-
racy, it also indicates that when investment budget is limited and expansion of pipes
must be more selective, it is harder to manage overflow reduction for all the different
rainfall events since overflow occurs at different locations when rainfall characteristics
differ.

Fig. 4.8 compares R-EO-20 and DS-SO-20 according to the three performance met-
rics, hypervolume, ε-indicator and generational distance. For all three measures, R-
EO-20 outperforms DS-SO-20. We also see that the metrics improve rapidly at earlier
generations and become roughly constant in later generations, similar to Fig. 3.12 for
the 5-D problem. However, for the 5-D problem, improvement stops at around the 15th

generation, but for the 20-D problem, improvement stops at around the 50th generation.
This suggests that for a surrogate-assisted optimization, the frequency of emulator up-
date should depend on the number of dimensions of the problem.

Finally, we compare the time needed for DS-SO-20 and R-EO-20 in terms of simu-
lation runs required. Table 4.3 shows the number of simulation runs required for the
different steps of the framework. Note that for sensitivity analysis, there can poten-
tially be fewer simulation runs for DS-SO-20 if we apply the clustering algorithm on
the drainage system introduced in Section 4.2.1. Although we do not run simulation-
optimization on multiple rainfall events for the 20 newly selected decision variables (R-
SO-20) due to the high computation time required, we still present the number of simu-
lations that would be required. The values are calculated assuming that the same setup
as R-EO-20 for the evolutionary algorithm is used for the simulation-optimization. We
see that R-EO-20 calls the simulator 12 times less than DS-SO-20 and 91 times less than
R-SO-20. While one simulation run in SWMM takes about 5 to 10 seconds, given the
number of iterations required for this framework, this translate to high time savings of
at least 600 hours compared to DS-SO-20. For more complex catchment model, simu-
lation for a single rainfall event can take up to minutes, computation savings promised
by surrogate models will be even greater in such cases.

4.3.3 Robustness analysis

Fig. 4.9 shows the cumulative distribution of performance (i.e., overflow reduction and
peak flooded nodes reduction) across the 16 random rainfall events used for robustness
analysis for all Pareto-efficient solutions obtained from R-EO-20 and DS-SO-20. Note
that the cumulative distribution here refers to weights, defined in Eq. 3.10, and not
probability, such that rainfall events with larger flood or higher frequency have higher
weights. Each line in the plot represents a solution and a solution has better perfor-
mance if it lies as far to the left as possible; this is also why we see expensive solutions
(in green-blue) lying closer to the left. For example, if a line passes through the point
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TABLE 4.3: Comparison of simulations required for DS-
SO-20, R-EO-20, and R-SO-20

DS-SO-20 R-EO-20 R-SO-20

Sensitivity analysis 32,000 39,000 39,000
Emulation 0 250 0
Optimization 500,000 0 4,000,000
Post-evaluation 0 6,120 0

Total 532,000 44,370 4,039,000
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(50%, 0.6), it can be interpreted as a solution achieving a reduction greater than or equal
to 50% for 0.6 (in terms of accumulated weights) of the random rainfall events.

Solutions obtained from R-EO-20 are more robust against a wide range of rainfall
characteristics as seen from the lines in Fig. 4.9 lying closer to the left compared to so-
lutions from DS-SO-20. There are solutions from DS-SO-20 that are Pareto-efficient for
the design storm but underperform when evaluated for random rainfall events. These
solutions corresponds to the lines lying in the lower right diagonal of the CDF plots.
Such lines are not present for the CDF plots for R-EO-20, indicating that using multiple
rainfall events in both sensitivity analysis and optimization step improves robustness
of solutions.

While the CDF plots provide an overview of how solutions perform for various
rainfall events, they do not reflect the type of rainfall events that solutions underper-
form in. Table 4.4 shows the hypervolume of the Pareto front for DS-SO-20 and R-EO-20
for the two sets of random rainfall events sampled. The hypervolume is calculated for
each of the 8 rainfall events and also for the weighted objectives. The rainfall events
are arranged in order of increasing severity of overflow caused, hence allowing us to
find out in which rainfall events solutions underperform in. We see that hypervolume
of solutions obtained by R-EO-20 is higher for all cases, with the exception of Rainfall
Event 1 which is the event most similar to the design storm. We also observe that so-
lutions obtained from DS-SO-20 perform better in rainfall events similar to the design
storm (e.g. Event 3 and 8) but performance degrades as rainfall characteristics devi-
ates from characteristics of the design storm. Solutions from DS-SO-20 performs the
worst for Rainfall Event 4, which is the smallest rainfall event, as they fail to eliminate
the small overflow, unlike solutions from R-EO-20. This highlights the importance of
considering not just the design storm but also rainfall events of a range of intensities,
duration, and profiles in the design of robust urban drainage systems.

4.4 Conclusion

Current practice of using design storms may not necessarily yield robust urban drainage
systems. While including stochastic rainfall events into the design process and tack-
ling the increased computational demand with surrogate-assisted optimization can be
a feasible alternative, the scalability of emulator comes into question when the prob-
lem is a high dimensional one. In this chapter, we investigate the suitability of an
urban drainage emulator and its application in surrogate-assisted optimization for a
high dimensional problem. In particular, we compare between two design frameworks:
the design storm method and our proposed robust design method. The design storm
method reflects current design practices. It relies on the design storm for sensitivity
analysis and optimization and uses simulation-optimization to obtain optimal drainage
designs. Our proposed method considers stochastic rainfall events in both sensitivity
analysis and optimization and uses surrogate-assisted optimization to obtain optimal
drainage design within reasonable computational time. The application of the frame-
work on the Nhieu Loc-Thi Nghe basin reveals the following insights:
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FIGURE 4.9: Cumulative distribution for (a) overflow reduction and (b)
flooded nodes reduction for the 16 random rainfall events selected. Note
that the x-axis is inverted so that it proceeds in the direction of degrading
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TABLE 4.4: Hypervolume of solutions from DS-SO-20 and R-EO-20 for ran-
dom rainfall event set 1 (left) and set 2 (right)

Set 1 DS-SO-20 R-EO-20
Event 4 0 1.01
Event 2 0.63 1
Event 3 0.99 1
Event 1 1.01 0.96
Event 8 0.88 1.11
Event 5 0.82 1.1
Event 6 0.51 1.04
Event 7 0.71 1.12
Weighted 0.7 1

Set 2 DS-SO-20 R-EO-20
Event 4 0 1.01
Event 2 0.99 1
Event 3 0.19 1
Event 1 0.93 0.99
Event 8 0.91 1.01
Event 5 0.84 1.09
Event 6 0.63 1.06
Event 7 0.66 1.01
Weighted 0.52 0.7

Note that 2 random rainfall events are selected from each of the 8 clusters,
which give rise to the 2 set of events.

Note that the reference set to calculate hypervolume is the best known
solution set found across the three optimization schemes for the weighted
objectives. Hence for the individual rainfall events, the solution set from
the different optimization scheme may be better than this reference set,
hence hypervolume can exceed 1 in such cases.

• The urban drainage emulator designed for the higher dimensional input space
has higher error overall than its counterpart for the 5-D problem but its predic-
tion of overflow for some rainfall events has improved. This means that while the
entire response surface is harder to fit for the higher dimensional space, some re-
gions of the response surface may become easier to fit. Emulation error increases
by a greater extent during surrogate-assisted optimization for the higher dimen-
sional problem, suggesting the greater potential of updating emulators for such
problems.

• For the higher dimensional problem, expensive solutions produced by the pro-
posed method outperforms the solutions from the design storm method but the
less expensive solutions from the two methods are comparable. One reason is
that prediction error is high for low cost solutions due to the high dimensionality
but it also suggests that a minimum investment budget is needed to effectively
curb overflow in different rainfall events.

• The proposed method yields urban drainage systems that are more robust than
the design storm method. When evaluated under rainfall events with different in-
tensities, duration, and profiles, the performance gap between solutions obtained
from the two methods extends further as conditions deviate from those of the de-
sign storm. This is true in both directions of deviation, when rainfall events are
smaller or larger than the design storm.

• The computational requirements of the proposed method is sharply reduced by
the use of emulators. It calls the simulator 12 times less than design storm based
method, translating to high time savings of at least 600 hours.
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Overall, this study demonstrates that our proposed method is a feasible way to de-
sign robust urban drainage systems. Considering stochastic rainfall events during sen-
sitivity analysis allows for a more appropriate selection of decision variables that target
overflow reduction for different rainfall events. Including these rainfall events during
optimization allows the search to identify optimal solutions that perform well across
these events. While computation time is increased as a result of the additional rain-
fall events considered, surrogate-assisted optimization proves to be a viable alternative
to simulation-optimization. Since our surrogate-assisted optimization adopts the ba-
sic sequential framework, emulation error increases during the optimization search.
An area for future research is to adopt other frameworks, such as the metamodel-
embedded evolution framework or approximation uncertainty based framework, so
that through emulator update or greater exploration of decision space, solutions ob-
tained can be closer to the true Pareto front. To provide greater computation time
savings, we can also look into the use of emulators in sensitivity analysis, which has
already been demonstrated in literature (Borgonovo, Castaings, and Tarantola, 2012;
Qian et al., 2018; Nagel, Rieckermann, and Sudret, 2020). Last but not least, climate
change can drive rainfall behaviours to become more extreme than what is considered
here. It will also be worthwhile to adapt the proposed framework to design urban
drainage systems that are robust under the deep uncertainty of climate change and
other external drivers, such as urban development.



79

Chapter 5

Conclusions

5.1 Summary

In this thesis, we set out to develop a methodology that is able to design robust optimal
urban drainage systems. To do so, we first identify the potential flaws of existing urban
drainage design methods that rely on design storms (Chapter 2). Then, we propose our
method that introduces stochastic rainfall events and surrogate-assisted optimization
in the design process. We test the new method on a smaller dimensional problem in
Chapter 3. Finally, we scale up our proposed framework to a higher dimensional prob-
lem and study its feasibility in Chapter 4. Applying our design framework to a real
world case study, the Nhieu Loc-Thi Nghe basin in Ho Chi Minh City, Vietnam, allows
us to gather insights on the practicality of our methods.

In Chapter 2, we begin by using a 4-step framework to identify optimal urban
drainage solutions and evaluate the robustness of solutions. The first two steps of the
framework consists of sensitivity analysis to identify decision variables for optimiza-
tion and then simulation-optimization to seek Pareto-efficient configurations of those
decision variables. These two steps depend on a design storm, which follows current
design practices. Solutions obtained are hence optimal for the design storm. In the
second half of the framework, we then evaluate these solutions under rainfall events
of various intensities, duration, and profiles and then assess the robustness of solu-
tions against different rainfall conditions. From our experiments, we find that none of
the drainage solutions obtained are robust, as their performance for the design storm
cannot always be replicated in other rainfall events. Solutions underperform in two
types of rainfall events: 1) less intense but longer rainfall events that cause more se-
vere floods, and 2) small, yet frequent rainfall events. In both cases, rainfall conditions
deviate from those of the design storm, and the drainage components chosen and opti-
mized for the design storm are no longer appropriate to alleviate flood in these differ-
ent rainfall events. We also find that between the two components of urban drainage
(pipes and LIDs), expanding pipes is more effective at reducing overflow and poten-
tially increasing robustness of a drainage system. From the work in this chapter, we
understand the potential flaws that design based on design storm may have and we
thus propose a method to overcome the challenges in the subsequent chapter.

In Chapter 3, we propose our method to design robust optimal urban drainage sys-
tems by making two major changes to the framework in Chapter 2. First, instead of
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depending on design storm, we introduce stochastic rainfall events into the optimiza-
tion step. However, this translates to an increase in computational demand as more
simulation runs are needed. To overcome this, we thus construct a GP-based emula-
tor to model and predict the overflow conditions and then employ the emulator in the
surrogate-assisted optimization to obtain drainage solutions that perform well in mul-
tiple rainfall events. Since this is our first attempt at using an emulator, we consider
a smaller optimization problem with a 5-dimensional decision space. We find that the
emulator is generally more accurate with increasing training points and basis func-
tions, but accuracy does not appear to correlate with the optimality of the Pareto front.
Comparing our proposed framework with the design storm method, we realize that
including stochastic rainfall events during optimization improves robustness but the
extent of improvement is limited by the choice of decision variables. This prompts the
use of stochastic rainfall events in the sensitivity analysis step when choosing decision
variables for optimization. Although the consideration of multiple rainfall events in-
crease computational demand, we show that surrogate-assisted optimization is a feasi-
ble alternative as it is 7 times faster than simulation optimization that uses design storm
and 129 times faster than the robust simulation optimization setup that uses stochastic
rainfall events.

In Chapter 4, we scale up the framework in Chapter 3 by applying it to a 20-
dimensional problem. We find that emulator error increases slightly for the higher
dimensional problem, but this error can become larger as the search progresses dur-
ing the surrogate-assisted optimization. In the framework in this chapter, we also in-
troduce stochastic rainfall events into sensitivity analysis, an earlier step of the design
framework, so that decision variables selected are aimed at overflow reduction for mul-
tiple rainfall events. The proposed framework here relies on stochastic rainfall events
for the entire design process and is compared to the method that relies on design storm
only. We successfully demonstrate that our proposed method yields urban drainage
systems that are more robust than the design storm method. When evaluated under
rainfall events with different intensities, duration, and profiles, the performance gap
between solutions obtained from the two methods extends further as conditions devi-
ate from those of the design storm.

5.2 Future works

In this thesis, we contribute a design framework that is capable of finding robust opti-
mal drainage systems. Although we demonstrate its effectiveness, we also notice many
areas for future improvements. First, exploring other emulation approaches for the ur-
ban drainage model may yield different results. Here, we adopt a GP-based emulator,
but there are also other approaches, such as radial basis functions, artificial neural net-
works, and polynomial chaos expansion, which can be applied (Razavi, Tolson, and
Burn, 2012). Besides data-driven approaches, including mechanistic knowledge, based
on the sets of ordinary or partial differential equations of the simulation model, into
the emulator is also a possibility, albeit an onerous one (Machac, Reichert, and Albert,
2016; Carbajal et al., 2017; Bermúdez et al., 2018). Second, it will also be interesting to
include the emulator into sensitivity analysis or perhaps to make use of simulations
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runs during sensitivity analysis to construct the emulator. Sensitivity analysis, like op-
timization, is also a time-consuming process that requires iterated calls of the simula-
tor, hence using an emulator at this stage could provide further computational savings.
Third, improving the surrogate-assisted optimization is perhaps the most likely way to
yield better solutions. Here, we adopt the basic sequential framework for surrogate-
assisted optimization. Updating the emulator or making use of the uncertainty of em-
ulation for greater exploration are two ways to improve the optimization (Di Pierro et
al., 2009; Yazdi and Neyshabouri, 2014; Akhtar and Shoemaker, 2016). However, they
come along with difficult choices such as choosing the frequency and method of updat-
ing the emulator, or choosing which solution to be evaluated by the original function
during the optimization.

In terms of application, an interesting research avenue is to design urban drainage
systems robust under changing climate and population growth. In our work, we only
consider the range of current rainfall conditions. Since drainage systems usually last
more than decades, it will be worthwhile to consider climate-driven changes in rainfall
behaviour and adapt our proposed framework to factor in such changes. Our frame-
work could be extended to account for deep uncertainty (McPhail et al., 2018), so as to
find urban drainage designs that are robust to changing rainfall conditions and other
external drivers. Another application is in the real time control of drainage systems,
which is also an computationally intensive task requiring iterated simulation runs that
can benefit from the use of an emulator.



82

Appendix A

Additional details on sensitivity
analysis

We use two sensitivity analysis (SA) methods to determine which decision variables
should be considered in the design process. The two methods are elementary effect
test (EET) and the extended Fourier amplitude sensitivity test (eFAST). We originally
considered 3 outputs for each SA method: reduction in total overflow (sum of over-
flow over all nodes and across all time instances), reduction in peak overflow (max-
imum overflow over all nodes at a single instance), and reduction in local overflow
(maximum total overflow over a single node). However, we eventually found that the
output local overflow reduction is not very informative since most of the time it just
refers to the reduction in total overflow at one particular node. Hence, we only use
total overflow reduction and peak overflow reduction in selecting decision variables
during SA.

EET is first performed on the initial 320 input factors—308 pipe variables and 12 LID
variables. The sampling strategy of EET builds r trajectories in the input space, each
consisting of M+1 points, such that one EE per factor is evaluated for each trajectory
(Morris, 1991). Here, r = 100 and M = 320. Since the EET randomly selects the starting
point of a trajectory, the pipes and LIDs are expanded or implemented to 50% of the
maximum value on average. As a result, overflow is evaluated over a catchment that
has a highly expanded drainage network and high LID implementation. This is unre-
alistic, since it will be very costly to apply such a drainage solution. To overcome this
issue, we first generate 1,000 random points in the input space, and then select 10% of
the cheapest solutions to be the starting points of the trajectories. Fig. A.1 shows the re-
sults for this round of EET, including the convergence plot of the sensitivity estimates,
calculated using the R version of the SAFE toolbox (Pianosi, Sarrazin, and Wagener,
2015). EET is the most suitable for screening to discard non-influential input factors.
Hence, we only select inputs that have a positive 95% lower one-sided bound for mean
of EEs for either output (total overflow reduction or peak overflow reduction). This
ensures that we are 95% confident that these inputs will reduce either peak overflow
or total overflow. The 78 selected pipes and 8 selected LIDs are highlighted in the plots.

After screening, both EET and eFAST are performed on this reduced set of input
factors (as it is advisable to apply more than one SA, when possible, to reinforce the
conclusions drawn from individual SA). Similarly, only 10% of the cheapest solutions
are chosen as starting points for the trajectories in EET. Fig. A.2 shows the eFAST results
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and Fig. A.3 shows the EET results. For each output, factors are ranked according to
their contribution to the overflow reduction (based on mean of EE for EET and on total
order index for eFAST). A factor is selected if it is ranked in the top 20 in both eFAST
and EET for the same output as this shows consistency across different SA. 12 pipes
are selected from this criterion (they are highlighted in Fig. A.2 and Fig. A.3). Only 1
of the LIDs is selected using this criterion; yet, all 8 LIDs are included eventually in the
optimization, because we want to maintain the ratio between pipe and LID variables
so as to find out if their performances change for different rain events.

Fig. A.4 shows the 12 selected pipes in the drainage network and also indicates
the 3 sub-catchments in which the LIDs are applied to. Please refer to Table 2.2 and
2.3 for description of these selected pipes and LIDs. Upon inspecting these selected
variables, we noticed that these pipes that contribute most to overflow reduction are
near overflow regions or are connected to pipes of larger diameters. Of the 12 origi-
nal LID variables, those that are not selected mainly lie at the eastern subcatchment of
the Nhieu Loc-Thi Nghe (NL-TN) basin. This is because pipe expansion around that
subcatchment can more effectively reduce overflow compared to reducing runoff from
that subcatchment using LIDs.

From the SA, we also notice that total overflow reduction and peak overflow reduc-
tion are correlated, hence only total overflow reduction is used as an objective in the
simulation-optimization. We also use the reduction in total number of flooded nodes,
rather than local overflow reduction, as an objective to get an indication of the spatial
distribution of the flood events.
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FIGURE A.1: Average of EEs against their standard deviation when out-
put is (a) total overflow reduction and (c) peak overflow reduction. Each
point represents one input factor. The larger the mean EE, the more in-
fluential the factor is. The larger the standard deviation of EE, the more
interactions that input has with other inputs. The confidence bounds
derived via bootstrapping is represented by the boxes around the point.
The confidence bounds is only shown for the selected variables. Con-
vergence plot of mean of EEs against sample size when output is (b)
total overflow reduction and (d) peak overflow reduction. Mean of EEs
should converge when sample size is large to indicate that the sensitiv-
ity estimate is independent of sample size. For clarity, only the selected
pipes are shown in the convergence plot. Since the mean EEs still fluctu-
ate at large sample size, it is less suitable to rank the inputs at this stage,
hence only screening is done to remove inputs that are most certainly
not able to reduce overflow. From this first round of EET, 78 pipes (in

orange) and 8 LIDs (in green) are selected.
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FIGURE A.2: Bar plots of total sensitivity indices for each of the 78 pipe
inputs and 8 LID inputs. White bar represents the main effect of the
input on the output while the colored bar represents the effect on the
output due to interaction with other inputs. 12 selected pipes are high-

lighted in orange while the 8 LIDs are highlighted in green.
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FIGURE A.3: EET and convergence plots for the second round of EET
that uses a reduced set of variables. Mean of EEs tend to converge at
large sample size in contrast to the first EET performed. 12 selected pipes

are highlighted in orange while the 8 LIDs are highlighted in green.
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Appendix B

Additional details on preliminary
simulation-optimization

A preliminary simulation-optimization is performed prior to the one described in Sec-
tion 2.3.2. The main difference stands in the decision variables used. In this preliminary
round, decision variables are not selected using sensitivity analysis. Pipe variables are
instead selected based on the duration with which they reach full capacity. We select
16 pipe variables following this rule as they are at full capacity for more than 3 hours
since the beginning of the design storm. Optimization experiments are performed in-
dependently using 10 initial random seeds: 5 experiments use 250 generations and
population of 200 individuals; the other 5 experiments use 500 generations and a pop-
ulation of 100 individuals—totalling 50,000 function evaluations. The objectives and
other parameters of the optimization are the same as those described in Section 2.3.2.

After obtaining the results for this preliminary simulation-optimization, we realize
that there may be a better way to select decision variables for optimization. This is
when we use SA as described in the Section 2.3.1. To compare the effects of using a dif-
ferent set of decision variables, optimization is performed again on the set of decision
variables selected through SA with the same settings as in the preliminary simulation-
optimization. Fig. B.1 shows the Pareto front obtained using the two different sets of
decision variables. Using the set of decision variables selected from SA, the maximum
overflow reduction is 58.8%. However, using the preliminary set of decision variables
only gives a maximum of 29.6% overflow reduction, despite the similar investment
costs. This demonstrates the importance of SA in choosing the right variables for the
optimization. This is especially important in large watersheds, where there could be
many variables that could be used in the optimization process. We learn that the vari-
ables chosen from SA are not necessarily those that reach full capacity during the storm,
because overflow can occur when only one end of the pipe is full. Thus, it is more ben-
eficial to expand these pipes than those in the preliminary simulation-optimization.

To evaluate the search quality and progress of the simulation-optimization, three
performance measures are used. They are the hypervolume indicator, generational
distance, and additive ε-indicator (Reed et al., 2013). These metrics capture the con-
vergence of the solution set (found by the optimization) with respect to a reference set,
which is usually the true Pareto front. When the true Pareto front is unknown, the best
known solution set found across all trials of the optimization is used as the reference
set. Hypervolume measures the volume of objective space dominated by a solution set.
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FIGURE B.1: Pareto front of simulation-optimization using the prelimi-
nary set of decision variables (triangles) and using the decision variables
selected by SA (circles). Using decision variables selected by SA roughly
doubles the overflow reduction for the same level of investments, indi-

cating the importance of SA to select variables prior to optimization.

Generational distance measures the average Euclidean distance of each point in the so-
lution set to its closest point in the reference set. Additive ε-indictor measures the worst
case distance (in contrast to the average distance) between the solution and reference
set, and is thus especially sensitive to gaps in the solution set. Fig. B.2 shows how the
three performance measures evolve as the optimization algorithm progresses for each
generation. The optimization which uses decision variables selected from SA performs
better than the preliminary optimization across all metrics, once again demonstrating
the importance of the SA. The optimization experiments using a population size of 200
also outperform the experiments with a population size of 100 in most instances. The
values of the three metrics also do not fluctuate when nearing 50,000 function evalua-
tions, implying that no further improvements can be made in the solution set even if
the algorithm proceeds further. Therefore, in the eventual setup described in the main
paper, all 10 experiments have population size 200 and 50,000 function evaluations.
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FIGURE B.2: Hypervolume, generational distance, and additive ε-
indicator of solution set as optimization progresses for (a) preliminary
simulation-optimization and (b) simulation-optimization using decision
variables selected from SA. Preliminary simulation-optimization experi-
ments perform poorly, especially in terms of hypervolume and additive

ε-indicator, which are more sensitive to gaps in the solution set.
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Appendix C

Additional results for modified
sensitivity analysis

Here, we present additional results and figures for the modified sensitivity analysis
described in Section 4.2.1. After performing hierarchical clustering on the nodes of the
drainage system for each rainfall event, we need to select the number of clusters. The
key is that if there are too few clusters, then we are less able to reduce the number
of simulations in the modified sensitivity analysis. Conversely, if there are too many
clusters, then the assumption that pipe changes in one cluster do not affect overflow in
another cluster is harder to hold true. We first select the number of clusters such that the
maximize size of a cluster does not exceed 20% of all nodes. Following which, we find
the dendrogram height (i.e. the distance metric between the clusters for the particular
agglomeration) associated with that number of clusters. We then use the maximum
dendrogram height across the 8 rainfall events to be the cutoff point to merge addi-
tional clusters. We also look at the Davies-Bouldin Index (DBI; a lower DBI is more
ideal) and ensure that DBI is low for the selected number of clusters (Fig. C.1). The
number of clusters for the 8 rainfall events are 9, 7, 9, 21, 22, 16, 17, and 14 respectively,
shown in Fig. C.2 and C.3.

We then perform modified sensitivity analysis using only inputs from the ’impor-
tant’ clusters identified (Section 4.2.1). We also perform a full sensitivity analysis using
all 320 input factors for the 8 rainfall events to compare our results. Fig. C.4 and C.5
show the results for the full and modified sensitivity analysis. We see that in most in-
stances, the top ranking variables are the same for both sensitivity analyses, showing
that the hierarchical clustering method together with the modified sensitivity analysis
is a feasible approach to reduce simulations runs.

Finally, we take the union of the set of best performing pipe variables for each rain-
fall events to obtain the 12 pipe variables used for optimization. These pipe variables
are shown in the map in Fig. C.6.
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