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Abstract

Engineering Systems and Design

Doctor of Philosophy

On the Value of Paleo-Reconstructed Data: Understanding Long-Term
Hydroclimatic Variability and Its Implications to Water Resources Management

by NGUYEN Tan Thai Hung

Trees often grow annual rings. These rings vary year to year depending on the an-
nual climatic conditions. Thus, tree rings are proxies through which we can infer about
past climate, such as changes in the water cycle. Specifically, we can use tree rings to
reconstruct history of river discharge, or streamflow, hundreds of years back in time.
These long time series augment the short instrumental records and can help us better
manage our water resources. While this idea was conceived decades ago, challenges
in reconstruction methodologies have limited the use of streamflow reconstruction in
water management. Most reconstructions rely on linear models that do not account
for catchment dynamics. They are also annual, while water management decisions are
made at finer time steps. My research tackles these two challenges. First, I develop
a new reconstruction method based on linear dynamical systems (LDS) to account for
catchment dynamics. I use the LDS method to reconstruct eight centuries of stream-
flow history at 62 river reaches in 16 countries across the Asian monsoon region. The
reconstructions reveal that streamflow in Monsoon Asia is spatially coherent, owing
to common influences by the oceans. Second, I produce seasonal and monthly recon-
structions, made possible by optimally combining proxies that have different seasonal
sensitivities. The monthly reconstructions of the Ping and Nan Rivers are then used
to stress-test the two largest reservoirs in Thailand, proving the importance of long
streamflow records containing a broad variety of droughts and pluvials. In synthesis,
this work advances streamflow reconstruction methodology, provides insights about
long term hydroclimatic variability of Monsoon Asia, and demonstrates the practical
value of streamflow reconstruction.
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1

Prologue

As a child, I had limited access to clean water. The city’s water network had not reached
our neighbourhood, and we used water from a shared well. Because our groundwater
was contaminated with alum, my father built our own sand and coal filter in a plastic
drum to treat the water from the well. Every year I helped him cleaning the sand—an
enervating task. But even after filtration, that water could only be used for washing
and cleaning. The more affluent families resorted to buying bottled drinking water.
My parents could not afford that, so every few days, we had to make a trip to my
grandparents’ place to collect tap water in a jerrycan for our most essential uses. I
remember, vividly, sitting behind on dad’s motorcycle, holding, or rather, hugging the
container. The hassle eventually went away years later when the water mains came
about.

And now, here I am, studying how to better manage water resources. I wish that in the
future, no one would have to go through what I did, but I know that people in many
parts of the world are suffering much worse. I want to fix that.

In searching for a better future, I became fascinated with the past—with paleohydrol-
ogy. Paleohydrology is the study of the water cycle in the distant past, getting its name
from the Greek words palaios (ancient), hydros (water), and logia (writing). The topic of
paleohydrology that I am particularly interested in is streamflow reconstruction. As I
will show in this thesis, understanding a catchment’s past behaviour, thereby under-
standing its water availability, can help tremendously in planning for how we use this
resource. Just as my own past has influenced my present and my future, I believe we
can find the key to future water management by knowledge from catchments’ history.
In this thesis, I will show how we may gain such knowledge, and how we can make
use of it.
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Chapter 1

A Case for Streamflow Reconstruction

1.1 The Need to Extend Streamflow Records

Ninety percent of the world’s population live within 10 km of an open freshwater
source (lakes and rivers) (Kummu et al., 2011). Understanding the behaviour of river
discharge, or streamflow, is crucial for managing water resources. Governmental agen-
cies around the world have been collecting streamflow data, which are used in design-
ing and operating critical infrastructure such as reservoirs, flood control systems and
irrigation networks. Although the importance of these instrumental data is undeni-
able, it has been suggested that they are inadequate (Thyer et al., 2006). Streamflow
is strongly influenced by climate. Climate varies over a wide range of time scales,
from years to centuries or even millennia. As a result, it is expected that streamflow
also varies on different range of time scales, including multi-century scales. Yet, in all
countries, streamflow records are only available for several decades to about 100 years
at best (Figure 1.1). Therefore, it is unlikely that instrumental records can capture all
aspects of streamflow variability. For example, instrumental record may not capture
extreme events that have long return periods.

These limitations have brought forth interests in the hydrological sciences community
to extend the instrumental records. Trees turned out to be a reliable data source. Pio-
neering works of Douglass (1914, 1919) showed that trees hold records of past climate:
the width of their annual rings is strongly correlated with precipitation and sun spot
cycles. Strong correlations were also found between tree rings and streamflow (Hard-
man & Reil, 1936; Schulman, 1945, 1951), eventually leading to the first reconstructions
of streamflow at the Bright Angel Creek and San Francisco River in the United States
(Stockton, 1971). These reconstructions proved that it is indeed feasible to extend the
instrumental streamflow record back in time using tree rings. Soon, many reconstruc-
tions were developed for the Colorado River Basin (Stockton & Jacoby, 1976), revealing
that between 1900–1925, the river experienced the wettest period in the past four cen-
turies. This abnormally pluvial period was, unfortunately, the basis for the Colorado
River Compact, a water rights agreement between the southwestern U.S. states. As a
result, “water that was not likely to be in the river on a consistent basis was divided among the
basin states” (Woodhouse et al., 2006). This overallocation of water rights continues to
cause severe water stresses and conflicts in the region till this day. Because of overallo-
cation, and hence overuse, the Colorado River no longer reaches the Pacific Ocean.
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Figure 1.1. Global availability of instrumental streamflow records, analysed using the
Global Streamflow Indices and Metadata Archive (Do et al., 2018).

Since Stockton and Jacoby (1976), streamflow reconstruction has brought forth insights
that were unattainable with short instrumental records. Most notably, streamflow re-
constructions have revealed extreme events (droughts and pluvials) in the distant past,
and put recent extreme events into perspective (Meko & Woodhouse, 2011). In some
cases, the paleo period was found to have more extreme droughts (e.g., Güner et al.,
2017), and both more extreme droughts and pluvials (e.g., DeRose et al., 2015; Schook
et al., 2016), than the instrumental period. In other cases, the opposite was observed
(Woodhouse et al., 2006; Littell et al., 2016). Although varying in details, these studies—
and many others (e.g., R. S. Maxwell et al., 2011; Bekker et al., 2014; Razavi et al.,
2015)—came to the consensus that reconstructed streamflow data provide more under-
standing about streamflow variability than do instrumental data alone. Such added
understanding is being transformed into water management practice in the U.S. (Meko
& Woodhouse, 2011) and Canada (Sauchyn et al., 2015). Similar progress may be ex-
pected in other countries.

1.2 Physical Basis for Streamflow Reconstruction

Streamflow reconstruction relies on the science of dendrochronology—from the Greek
words dendron (tree) and chronos (time). Dendrochronology studies climatic and en-
vironmental signals in tree rings, and uses those signals to date each annual ring to
a calendar year. The most commonly used tree ring feature is ring width, but other
features such as wood density and oxygen isotope ratio are also valuable.



Chapter 1. A Case for Streamflow Reconstruction 4

1.2.1 How Do Trees Form Rings?

Trees grow under favourable climatic and environmental conditions: sufficient soil
moisture and nutrients, appropriate temperature, among others. These favourable con-
ditions often come in cycles called the growth season.

As a tree grows, it forms a tissue called xylem, which consists of new wood cells in
the outer part of the trunk, just under the bark (xylem is derived from the Greek word
xylon, meaning wood.) The xylem transports water and minerals from the root to the
leaves. At the beginning of the growth season, the xylem is very porous so that it can
transport as much water as possible. Towards the end of the growth season, however,
porous wood can be dangerous: there is not enough water in the soil to fill all the
pores, and cavitation can occur that ruptures the wood. As a defence mechanism, the
tree increases its production of a polymer called lignin to thicken the cell wall so as
to strengthen the wood and reduce porosity. This thickened wood, called latewood, is
darker in colour than the wood produced earlier in the season (called earlywood). In the
next growth season, another layer of light-coloured earlywood is formed. The colour
contrast between latewood and subsequent earlywood creates a ring boundary; a ring
consists of earlywood and latewood of the same growth season (Figure 1.2).

Figure 1.2. A core sample of European oak (Quercus robur) with annual rings and pith
clearly visible. Taken in September 2018 at the 29th European Dendroecological Field

Week.

1.2.2 Tree Rings and Streamflow: A Conceptual Model

Tree rings are formed with the seasonal cycles of climate. In temperate climates, tem-
perature is often the limiting factor of tree growth. There, growth season often coin-
cides with summer when the weather is warm enough. The warmer the temperature,
the faster the growth, and the wider the rings. In tropical and sub-tropical climates,
soil moisture becomes the limiting factor. Here, growth season often coincides with the
rainy season when there is sustained rain to keep the soil moist. The more rain there is,
the faster trees grow and the wider their rings become.

Using tree rings, we can infer about the climate and hydrology of the past. The main
physical processes that involve climate and tree growth are depicted in Figure 1.3a.
The climate at a given location can be characterized by precipitation and temperature,
among others. These climatic inputs control soil moisture on land. Except for losses
(such as groundwater recharge, evaporation, and surface runoff), the net soil moisture
storage then follows two main paths: one goes out of the catchment as streamflow,
the other is taken up by the trees and transpired back into the atmosphere, influenc-
ing tree growth along the way. We can thus infer a relationship between tree rings
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and streamflow because they are both influenced by climate and soil moisture. Recon-
structing streamflow directly from tree rings is the most common approach that has
been around since Stockton (1971).

  

CLIMATE 
Precipitation, Temperature, etc. 

TREE 
Ring width 

CATCHMENT 
Streamflow  

LAND 
Soil moisture 

C 

S 
R Q 

a) b) 

Figure 1.3. a) Relationships between hydroclimatic variables and tree growth. b) A
probabilistic graphical model representing the relationships in a), where C is a vector
of climate variables, S the soil moisture, R the ring width index, and Q streamflow.

The arrows represent the conditional dependence among variables.

The conceptual model in Figure 1.3 also suggests two other (indirect) approaches to
reconstructing streamflow: (i) from precipitation, and (ii) from soil moisture. These
novel approaches have been explored recently. In (i), one first reconstructs precipitation
from tree rings, then routs the precipitation reconstruction through a water balance
model to obtain streamflow (Saito et al., 2015; Tozer et al., 2018; Meko et al., 2020). This
approach requires a large amount of data for the water balance model’s calibration.
This is a key limitation to its applicability in data-scarce region such as many parts of
Asia, and will not be considered further in my thesis.

Following (ii), one first needs a long term soil moisture record that is reconstructed from
tree rings. Several such records have been developed (e.g., Cook et al. 1999, 2010a).
They are gridded data sets of the Palmer Drought Severity Index (PDSI, W. C. Palmer,
1965; van der Schrier et al., 2013), and thus are called drought atlases. Particularly,
drought atlases of North America (Cook et al., 1999, 2010b) and the Asian Monsoon
region (E. R. Cook et al., 2010a) have been shown to be practical paleoclimate prox-
ies to reconstruct streamflow. Earlier experiments used individual grid points, either
in combination with ring widths (Coulthard et al., 2016) or on their own (Graham &
Hughes, 2007; Adams et al., 2015). Ho et al. (2016, 2017) and Nguyen and Galelli (2018)
then formalized the methodology and provided theoretical considerations. They rea-
soned that since both streamflow and PDSI can be modeled as functions of ring width,
one can also build a model to relate streamflow to PDSI. Reconstructing streamflow
from drought atlases has some important computational advantages but also has some
limitations. I will discuss them in Chapter 3.
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The physical discussion above yields three types of paleoclimate reconstruction: stream-
flow from tree rings, soil moisture from streamflow, and streamflow from soil moisture.
We now derive mathematically the relationships between these reconstruction types.

Each reconstruction is a conditional distribution of one variable (e.g. streamflow) given
that we have observed another variable (e.g. soil moisture), and given the historical cli-
mate. We represent these conditional distributions with a probabilistic graphical model
(Koller & Friedman, 2009) as shown in Figure 1.3b. There are four random variables in-
volved: climate (C), soil moisture (S), ring width (R), and streamflow (Q). Each of these
variables can be multivariate, i.e., C includes precipitation and temperature, among
others, and all variables can include multiple sites or grid points. As a convention, let
fX(x) be the probability density function (PDF) of the random variable X, fXY(x, y) be
the joint PDF of X and Y, and fX|Y(x|y) be the conditional PDF of X given that Y = y.

Reconstructing streamflow from tree ring is essentially deriving the distribution of Q
given R and C, i.e, fQ|R,C(q|r, c), where r is the measured ring width index, and c is the
historical climate. We can decompose this distribution as follows:

fQ|R,C(q|r, c) =
∫

fQ,S|R,C(q, s|r, c) ds

=
∫

fQ|S,R,C(q|s, r, c) fS|R,C(s|r, c) ds.
(1.1)

The first equality comes from the relationship between marginal and joint distributions.
The second equality comes from Bayes’ theorem. Now, Q is independent of R given S
and C (Figure 1.3b), so fQ|S,R,C(q|s, r, c) = fQ|S,C(q|s, c). Consequently,

fQ|R,C(q|r, c) =
∫

fQ|S,C(q|s, c) fS|R,C(s|r, c) ds. (1.2)

Observe that fQ|S,C is the streamflow reconstruction from soil moisture, and fS|R,C is the
soil moisture reconstruction from tree rings. Thus we have established mathematically
the reasoning that tree-ring-based streamflow reconstruction is possible based on the
link through soil moisture. fQ|R,C is the marginal distribution without observing the
soil moisture. Instead of constructing fQ|R,C, we can infer S from R, then Q from S, by
constructing fS|R,C and fQ|S,C.

1.3 Knowledge Gaps and Thesis Contributions

This thesis contributes to both the methodology and the applications of streamflow
reconstruction, focusing on the Asian Monsoon region, particularly Southeast Asia.
I identify four important research gaps. First, most reconstruction methods rely on
linear regression, which does not account for catchment dynamics. Second, most re-
constructions have an annual resolution, often insufficient for water resources applica-
tions. Third, few reconstructions have been done in Asia, all of which are single-sited;
a regional, synthesized understanding is lacking. And fourth, despite interests from
the water resources community, applications of streamflow reconstructions to water
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system operations are still limited in scope and effectiveness. This thesis aims to fill
these gaps. I present two advances in reconstruction methodology to address the first
two gaps. Then, applying these new methods, I demonstrate how streamflow recon-
structions provide a synoptic understanding of streamflow variability, and how high
resolutions can be used to study water systems probabilistically.

In Chapter 2, I develop a novel streamflow reconstruction framework based on linear
dynamical systems (LDS). The unique feature of this framework, compared to con-
ventional reconstruction techniques, is the inclusion of a hidden state variable—the
catchment flow regime (i.e., wet or dry). The LDS model also serves as a stochastic
streamflow generator. Using a case study in the Ping River (Thailand), I show how we
can gain insights about the regime shifts in a river basin.

In Chapter 3, I address a fundamental challenge in streamflow reconstruction: tree ring
data are annual, so how do we obtain sub-annual (e.g., seasonal or monthly) recon-
structions that are more practically useful for water resources management? Leverag-
ing the fact that different tree ring proxies are sensitive to different seasons, I develop
a novel framework that optimizes proxy combination in order to obtain seasonal re-
constructions together with the annual one. Importantly, the framework ensures that
the total seasonal flows match the annual flow closely. This mass balance criterion is
important for water resources decisions such as water allocation.

In Chapter 4, I apply the LDS model to reconstruct streamflow at 62 stations on 41 rivers
in 16 countries across the Asian Monsoon region—the Monsoon Asia. For such a large
scale reconstruction, it is impractical to manually tune the model hyperparameters (the
thresholds to include paleoclimate proxies), as presented in Chapter 2. Therefore, I
also develop a novel, automatic, and climate-informed input selection scheme. This
large scale reconstruction reveal that streamflow in Monsoon Asia is spatially coherent,
owing to common influences exerted by the oceans. The reconstruction also shows how
these oceanic teleconnections vary over space and time.

In Chapter 5, I first expand the method presented in Chapter 3 to obtain monthly
reconstructions—a six-fold increase in temporal resolution. Then, I use the reconstruc-
tions to train a stochastic streamflow generator in order to simulate and probabilisti-
cally assess the performance of Thailand’s main water resources system. The simu-
lations produce difference performance distributions with different stochastic ensem-
bles, suggesting that using instrumental data alone may not be adequate. This work
demonstrates that, thanks to monthly reconstruction, it is now feasible to use recon-
structed streamflow in operational studies of water system. The results also point out
important challenges that remain to be solved so that streamflow reconstructions can
be used for optimizing water system operations.

Finally, in Chapter 6, I synthesize the value of streamflow reconstruction to water re-
sources management and discuss several interesting research direction, some of which
I will pursue in my post-doctoral work.
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Chapter 2

A Linear Dynamical Systems
Approach to Streamflow
Reconstruction Reveals History of
Regime Shifts in Northern Thailand

Publication

Nguyen, H. T. T., & Galelli, S. (2018). A Linear Dynamical Systems Approach to Stream-
flow Reconstruction Reveals History of Regime Shifts in Northern Thailand. Water Re-
sources Research, 54(3), 2057–2077. https://doi.org/10.1002/2017WR022114

2.1 Introduction

Typically, streamflow reconstruction involves two steps: one first establishes an em-
pirical relationship between climatic proxies (e.g., tree-rings) and streamflow for the
instrumental period, then feeds the paleo period’s climatic proxies into the established
relationship to obtain past streamflow (e.g., Hidalgo et al., 2000; Woodhouse et al.,
2006; Littell et al., 2016; Allen et al., 2017). The following principal component linear
regression (henceforth simply referred to as linear regression) is often adopted:

yt = α + βut + εt, (2.1)

where t is the time index, y the streamflow (transformed to a Gaussian distribution), u
the climatic proxies (typically pre-processed with Principal Component Analysis (Jol-
liffe, 2002), or other statistical techniques), ε a white noise, α the intercept term, and β
the vector of regression coefficients. This approach has been proven to provide reliable
reconstructions for a variety of modelling conditions—e.g., catchment size, length of
instrumental and paleo period, hydrological regime—but it assumes that the climatic
input ut is the sole predictor of streamflow yt. In other words, Equation 2.1 neglects
the catchment dynamics and their effect on streamflow generation. As a consequence,
linear regression models may not fully capture some important phenomena, such as
long-range dependence in streamflow, complex flood generation mechanisms, or tem-
poral clustering of extreme events (Pelletier & Turcotte, 1997; Koutsoyiannis, 2011).
This might translate into an underestimation (or overestimation) of streamflow.

https://doi.org/10.1002/2017WR022114
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The most natural way to incorporate catchment dynamics into streamflow reconstruc-
tion is to adopt a mechanistic modelling approach. This idea was explored by several
studies. Saito et al. (2015) used the Thornwaite water balance model and reconstructed
seasonal temperature and precipitation records to reconstruct streamflow. Gangopad-
hyay et al. (2015) introduced a hybrid paleo-water balance approach consisting of two
main steps: first, precipitation and temperature data are resampled to create their non-
parametric reconstructions (Lall & Sharma, 1996); then, the reconstructions are fed into
a water balance model to reconstruct streamflow. Tozer et al. (2018) reconstructed
streamflow using a Budyko model with reconstructed data and simulated potential
evaporation (PE); the lack of reconstructed PE here was compensated by using its an-
nual average. Naturally, mechanistic models require a large amount of hydrological
data, either instrumental, simulated, or reconstructed. Such data may not always be
available with the required spatial and temporal resolution. This limits the applicabil-
ity of mechanistic models.

Recently, Bracken et al. (2016) developed a hidden Markov model for streamflow re-
construction. The hidden state is derived from climate proxies and interpreted as the
“state of the climate”; streamflow is then reconstructed from the climate state via a log-
linear function. In this hierarchical model, streamflow generation depends on climate
dynamics rather than catchment dynamics.

The main motivation for this work is to develop a streamflow reconstruction tech-
nique that accounts explicitly for the catchment dynamics without requiring a sub-
stantial amount of data. We address this challenge by appealing to linear dynamical
systems—a class of models that has been used widely in hydrology, as it provides a
good approximation for many natural phenomena, including the rainfall-runoff pro-
cess (e.g., Cooper & Wood, 1982a; Ramos et al., 1995). Specifically, we model the re-
lationship between climatic proxies and streamflow using the state-space representa-
tion of a discrete, linear dynamical system, which allows us to account for the dynam-
ics of the catchment state as well as the effect of both climate proxies and catchment
state on the streamflow generation process. Traditionally, linear dynamical systems
are learned using the Expectation-Maximization (EM) algorithm (e.g., Cheng & Sabes,
2006; Shumway & Stoffer, 1982). However, EM cannot be used directly for stream-
flow reconstructions because the length of the climate proxies differs from that of the
streamflow time series. To overcome this, we propose a novel variant for the EM algo-
rithm that accounts for missing data. In this variant, model learning and reconstruction
are carried out simultaneously instead of the two-step approach described in the first
paragraph.

The technique is tested in the Ping River Basin (northern Thailand), where we recon-
struct 406 years of annual streamflow based on the time series of the Palmer Drought
Severity Index, retrieved from the Monsoon Asia Drought Atlas (E. R. Cook et al.,
2010a). We show that the proposed model yields two important advantages. First,
the reconstructed streamflow time series is complemented by a corresponding time
series of a catchment state variable that provides information on the catchment’s dy-
namics (e.g., regime-like behaviour), thereby assisting with the analysis of historical
droughts and pluvials. Second, the model can readily generate stochastic streamflow
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replicates. These advantages are obtained with similar skills and a marginal increase
in computational requirements compared to linear regression.

2.2 Study Site and Data

2.2.1 The Ping River Basin

The Ping River, located in northern Thailand, drains a catchment of 33,900 km2 (Komori
et al., 2012). Along with the Nan River, the Ping is one of the main tributaries of the
Chao Phraya, whose basin covers 30% of the country’s surface (Figure 2.1a). The water
flowing in the Chao Phraya Basin serves multiple users—i.e., agricultural, industrial,
and domestic supply, hydropower generation, navigation, and prevention of seawater
intrusion in the Gulf of Thailand—supporting a population of approximately 25 million
people, including 8 million in Bangkok (Divakar et al., 2011; Takeda et al., 2016). A key
component of the water system is the Bhumibol Reservoir, located on the Ping River.
The reservoir has a large active storage capacity—about 9,700 Mm3—that helps control
floods and meet the demand of the different water users.

In this study, we aim to reconstruct annual streamflow (on a water year basis, April to
March) at the P.1 stream gauging station, located in Chiang Mai, upstream of Bhumibol
Reservoir (Figure 2.1a). In this area, monthly streamflow exhibits a strong seasonal
pattern, with higher flow observed during the Southwest Monsoon season (early May
to October-November) (Figure 2.1b). Peak flows and, therefore, floods are generally
observed during the second part of the monsoon season when heavy rainfall events
occur over a catchment that is already wet. The flood generation mechanism can vary
on an annual basis, as it depends on the intertwining interactions between monsoon
rainfall, global circulations, and tropical storms (Lim & Boochabun, 2012). For instance,
the 2006 flood appears to be caused solely by monsoon rainfall—whose intensity is
amplified in La Niña years (Kripalani & Kulkarni, 1997)—while larger events, such
as those that occurred in 1973 and 2005, were caused by the combination of monsoon
rainfall and tropical storm activities (Lim & Boochabun, 2012). Naturally, such complex
streamflow generation process makes the reconstruction exercise difficult, especially
when using data derived from moisture-limited trees, because saturated overland flow
is not reflected in the tree-ring widths.

We obtained monthly streamflow data at P.1 from the Thai Royal Irrigation Depart-
ment’s database (http://www.hydro-1.net). To match the last year of our paleo data
source (described in the next section), we used 85 water years—from April 1921 to
March 2005. Since water management in Thailand is carried out on a water year ba-
sis, we believe that a reconstruction based on a water year is more useful. We filled in
the single missing data point (June 1933) by averaging the monthly streamflow of the
previous and subsequent month.

2.2.2 The Monsoon Asia Drought Atlas

In Southeast Asia, streamflow reconstruction studies are rare because the necessary
instrumental data for calibration are often limited and, most importantly, tree-ring
records are scarce—an issue partially attributable to the lack of suitable tree species

http://www.hydro-1.net
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Figure 2.1. a) Map of the Chao Phraya River Basin and main tributaries, including the
Ping River. The P.1 station is indicated with a red dot. b) Distribution of the monthly

streamflow measured at P.1 for the period April 1921 to March 2005.
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(Sano et al., 2009). In fact, to the authors’ knowledge, there has been only one stream-
flow reconstruction attempt in Southeast Asia (D’Arrigo et al., 2011a). To address
the problem of data scarcity, we propose to use the Palmer’s Drought Severity Index
(PDSI). While there are only a few tree-ring sites in Southeast Asia, the PDSI is avail-
able in a gridded data set called the Monsoon Asia Drought Atlas (MADA) (E. R. Cook
et al., 2010a)—a spatial-temporal drought map over the Asian Monsoon region, with
resolution 2.5◦ × 2.5◦. The map comprises 534 grid points, each containing an annual
time series of the PDSI, from 1300 to 2005, reconstructed from tree-ring chronologies.
The theoretical ground for using the PDSI as a climate proxy (recall Section 1.2.2) is that
both PDSI and streamflow can be expressed as regression functions of tree-rings; hence,
one can build a regression function between them. Based on this idea, Ho et al. (2016)
utilized the Living Blended Drought Atlas (LBDA) (E. R. Cook et al., 2010b)—a grid
of PDSI time series reconstructed from tree-rings over North America—to reconstruct
streamflow in the Missouri River Basin, yielding good reconstruction skill (adjusted R2

ranged between 0.56 and 0.90).

Preliminary analyses showed that annual streamflow at P.1 station has higher correla-
tion with the nearby MADA grid points than with nearby tree-ring chronologies (Table
2.1, Figure 2.2). The analyses also showed that 1,200 km is the optimal search radius to
include the MADA grid points (Figure 2.3). There are three possible explanations for
this result. First, this radius incorporates valuable information from the Bidoup-Nui
Ba tree-ring site in Vietnam, about 1,200 km south-east of P.1. The chronology from
this site was a major “anchor” for PDSI reconstruction in this region (E. R. Cook et
al., 2010a). Second, the chronologies at the southern-most end of the Tibetan Plateau
may have contributed to the reconstruction (Figure 2.2) [Cook, 2017, personal communi-
cation]. Finally, going beyond 1,200 km means leaving the climate zone characterizing
the region (Peel et al., 2007). Based on these analyses, we used 51 MADA grid points
(within the optimal radius) for the period 1600–2005 as the paleoclimatic data for our
streamflow reconstruction. The use of a shorter time series is justified by the fact that
most tree-ring chronologies in Southeast Asia started from the 17th century onwards
(Buckley et al., 2007b; Sano et al., 2009)—so, data for the period before 1600 may be less
reliable.

2.3 Linear Dynamical System Learning–Reconstruction

In this section, we first provide a brief overview of linear dynamical systems, and then
describe in greater detail our proposed variant of the Expectation-Maximization al-
gorithm used for the reconstruction exercise. We then show how the linear dynamic
model can be used to generate stochastic streamflow replicates. Finally, we describe
the implementation of the algorithm in the R package ldsr.
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Table 2.1. Correlation between proxies (MADA grid points and tree-ring
chronologiesa) and P.1 streamflow, arranged by increasing distance from station P.1,
grouped by similar distances. The numerical IDs (e.g., 252) are those of the MADA

grid points. The other IDs belong to the tree ring chronologies.

ID Starting year Ending year Distance to P.1 (km) Correlation p-value

252 1300 2005 27 0.52 < 1E-4
TH001 1558 2005 55 0.2 0.0632
TH006 1648 2004 85 -0.04 0.7464

251 1300 2005 282 0.53 < 1E-4
TH002 1786 1993 354 0.13 0.2757

275 1300 2005 368 0.48 < 1E-4
TH003 1616 1993 370 -0.04 0.7589

LS001 1743 2005 407 -0.22 0.0407
TH004 1693 2006 423 0.18 0.0919
LS002 1785 2005 439 -0.14 0.1863

301 1300 2005 500 0.42 0.0001
a Standardized chronology indices are obtained from the dendrobox project
(dendrobox.org; Zang, 2015)
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Figure 2.2. Map showing MADA grid points (colour-scaled circles) within 1,200 km of
station P.1 (red square), and nearby tree-ring sites (green triangles). The MADA grid
points show a radially decreasing correlation pattern. Beyond 1,200 km, correlation
is insignificant. (Annual correlation between streamflow and PDSI was calculated for

the instrumental period 1921–2005.)

dendrobox.org
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Figure 2.3. Results of the preliminary analysis to find the optimal search radius. For
each radius between 100–2000 km with 100 km increments, we fitted the benchmark
model and calculated the performance scores (Section 2.3.5). This figure shows the

changes in each score with increasing radius.

2.3.1 Linear Dynamical Systems

We consider a stochastic, discrete, time-invariant, linear dynamical system with the
following state-space representation:

xt+1 = Axt + But + wt (2.2)
yt = Cxt + Dut + vt (2.3)
wt ∼ N (0, Q)

vt ∼ N (0, R)

where x ∈ Rp is the system state; u ∈ Rm and y ∈ Rq are the input and output; w ∈ Rp

and v ∈ Rq are both white noise, independent of each other. Henceforth, we refer to the
system governed by Equations 2.2 and 2.3 as a linear dynamical system (LDS), and its
parameters A ∈ Rp×p, B ∈ Rp×m, C ∈ Rq×p, D ∈ Rq×m, Q ∈ Rp×p, and R ∈ Rq are col-
lectively referred to as θ. Furthermore, we assume that, at time t = 1, the system starts
from an initial state x1 ∼ N (µ1, V1). Note that the LDS model is a state-space repre-
sentation of the ARMAX model (Auto-Regressive–Moving Average with eXogeneous
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input) (Ramos et al., 1995; Shumway & Stoffer, 2011), but it has an advantage over AR-
MAX: the system state is modeled explicitly. In rainfall-runoff modeling applications
(e.g., Ramos et al., 1995), x, u, and y represent the catchment state (an indicator of its
wetness/dryness), rainfall, and runoff (or streamflow), respectively. In the context of
this study, x and y maintain the same meaning, whereas the input u is represented by
the climatic proxy.

The model can be used for both single- and multi-site applications (Cooper & Wood,
1982a, 1982b). In the latter case, x(j)

t and y(j)
t represents the state and output at the j-th

site, and the matrices A, C, Q and R capture the spatial dependence between the sites.
Moreover, Equation 2.2 implies that state transition is a first-order Markov process.
Higher order Markov processes can be transformed into first-order by expanding the
state space. For example, in this case study, a one-dimensional system state xt repre-
sents the catchment wetness at time t. We may use a two-dimensional system state to
represent the catchment wetness at the current and previous time step. The dimensions
of matrices A, B, C, D, Q, and R must then be increased accordingly.

One observes that linear regression is a sub-class of the LDS model: the state-dependent
term Cx in Equation 2.3 is replaced by the constant intercept term α in Equation 2.1,
and the state transition Equation 2.2 is unused in linear regression. As a result, linear
regression may not fully capture phenomena related to the catchment dynamics, such
as flood generation mechanisms or long-range dependence (Koutsoyiannis, 2011). In
this respect, LDS is better suited, since it uses the information regarding both catchment
state and climate proxies to estimate streamflow. Another key advantage of LDS over
linear regression concerns the autocorrelation structure of the output variables. When
the linear model is learned using least square estimators, as is often the case, serial
independence is implicitly assumed (DeGroot & Schervish, 2012, pg. 701), which is
often not valid for climatic and hydrological processes (see Pelletier & Turcotte, 1997).
This, on the other hand, is not a problem for the LDS model, which is learned using a
maximum likelihood method, as we shall see in Section 2.3.2.

2.3.2 Learning the System States and Parameters with the Expectation Max-
imization Algorithm

Equations 2.2 and 2.3 indicate that in order to model the annual streamflow (i.e., the
system output y), input u, state x, and parameters θ must be known. When the state
trajectory is known, the task of estimating the parameters is generally referred to as the
system identification problem (Roweis & Ghahramani, 2001). When the system param-
eters are known, the task of estimating the state trajectory is called the state estimation
problem [ibidem]. Interestingly, the task at hand is a combination of both: only the sys-
tem output y and input u (i.e., tree rings or soil moisture) are available, so neither the
state nor the parameters are known. One possible solution, first proposed by Shumway
and Stoffer (1982), is to iterate between state estimation and system identification us-
ing the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). This method
was further developed by Ghahramani and Hinton (1996) and Cheng and Sabes (2006).
The algorithm starts with an initial parameter set θ̂0. At the kth iteration, given the
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current parameter set θ̂k, the Expectation step (E-step) estimates the hidden states

X̂(θ̂k) = E
[
X | Y, θ̂k

]
;

where t = 1, ..., T is the time index, X = (x1, ..., xT) is the state trajectory, Y = (y1, ..., yT)
is the output trajectory, and the hat notation denotes the estimator for the respective
unknown quantity. In other words, this step solves the state estimation problem. Then,
given the newly estimated state, the Maximization step (M-step) finds a new parameter
set θ̂k+1 that maximizes the likelihood of the output; that means, the M-step solves the
system identification problem. Mathematically, the goal of the M-Step is to find

θ̂k+1 = arg maxL
(
Y, X | θ̂k, U

)
where L(.) denotes the likelihood function, and U = (u1, ..., uT) the input trajectory.
The critical property of the EM formulation is that the likelihood is non-decreasing
after each iteration step (Dempster et al., 1977), so Equation 2.4 always holds.

L
(
Y, X | θ̂k+1, U

)
−L

(
Y, X | θ̂k, U

)
≥ 0 (2.4)

EM iterates between the E-step and the M-step until convergence, i.e., when the left-
hand-side of Equation 2.4 is less than a predetermined threshold τ. In the case of Gaus-
sian likelihood, convergence is always guaranteed (Wu, 1983). In the remainder of this
section, we describe the mathematical details of the EM algorithm.

2.3.2.1 E-step

Throughout the E-step, the system parameters are kept at the values determined in
the previous M-step. Given the observed output trajectory Y, the state trajectory X is
estimated using the Kalman smoother (Anderson & Moore, 1979). Let

x̂t|s = E [xt | y1, ..., ys] (2.5)

V̂t|s = V
[
x̂t|s | y1, ..., ys

]
(2.6)

Thus, x̂t|s is the estimated state at time t given observations up to time s, and V̂t|s is
the estimated variance of that state estimator. When s > t, the estimation task is called
smoothing, when s < t, it is called prediction, and when s = t, it is called filtering. The
overall goal of the Kalman smoother is to compute x̂t|T (hence the name smoother, as
T ≥ t). This task is done in two passes: forward and backward.

The forward pass utilizes the Kalman filter (Kalman, 1960) to estimate x̂t|t (hence the
name filter). First, we assume an initial state x1 ∼ N (µ1, V1), so x̂1|1 = µ1 and ŷ1|1 =
Cµ1 + Du1. For t = 2, ..., T, given the latest available estimate x̂t−1|t−1 based on obser-
vations up to time t− 1, we predict the current state using Equation 2.2:

x̂t|t−1 = Ax̂t−1|t−1 + But (2.7)

V̂t|t−1 = AV̂t−1|t−1A′ + Q (2.8)



Chapter 2. Streamflow Reconstruction with Linear Dynamical Systems 17

The system output for the current time step is predicted using Equation 2.3:

ŷt|t−1 = Cx̂t|t−1 + Dut (2.9)

Once the actual output yt is observed, the difference between the predicted output
(Equation (2.9) and observation is useful for improving the state estimation:

x̂t|t = x̂t|t−1 + Kt(yt − ŷt|t−1) (2.10)

where
Kt = V̂t|t−1C′(CV̂t|t−1C′ + R)−1 (2.11)

is the Kalman gain. The computation in Equation 2.10 is called measurement update,
which adds an updating term to x̂t|t−1 to obtain x̂t|t. Equation 2.10 also shows that the
updating term is proportional to the prediction error

δt := yt − ŷt|t−1 (2.12)

Finally, the variance of the state estimation can be updated as well

V̂t|t = (I − KtC)V̂t|t−1 (2.13)

where I is the identity matrix. One can think of the distribution of x̂t|t−1 as the prior
distribution of xt, and the distribution of x̂t|t as the posterior distribution, once new
data yt is obtained. Furthermore, the Kalman filter can be shown to be the optimal
estimator, in that it minimizes the mean squared error. The detailed proofs can be
found in Shumway and Stoffer (2011, Chapter 6).

The Kalman filter is the optimal estimator for xt given all observations up to time t.
However, if one has all the observations y1, ..., yT, one can improve the state estima-
tion further using the Rauch-Tung-Striebel (RTS) recursion (Rauch et al., 1965) in the
backward pass. This pass is initialized with x̂t|T and V̂t|T from the forward pass. For
t = T − 1, ..., 1, the following quantities are computed

Jt = V̂t|t A(V̂t+1|t)
−1 (2.14)

x̂t|T = x̂t|t + Jt(x̂t+1|T − x̂t+1|t) (2.15)

V̂t|T = V̂t|t + Jt(V̂t+1|T − V̂t+1|t)J′t (2.16)

ŷt|T = Cx̂t|T + Dut (2.17)

In the forward pass, one updates the state estimation based on (yt − ŷt|t−1). In the
backward pass, one does so based on (x̂t+1|T − x̂t+1|t). The multiplier Jt acts as a gain,
similarly to the Kalman gain in Equation 2.11.

2.3.2.2 M-step

Throughout the M-step, the state values are fixed as those obtained in the last E-step.
The goal of the M-step is to find the maximum likelihood estimators for the system
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parameters. If the state trajectory X were known, the expression for the log-likelihood
would be

L = logL (Y, X | θ, U) =−
T

∑
t=1

1
2
(yt − Cxt − Dut)

′R−1(yt − Cxt − Dut)

−
T

∑
t=2

1
2
(xt − Axt−1 − But−1)

′Q−1(xt − Axt−1 − But−1)

− 1
2
(x1 − µ1)

′V−1
1 (x1 − µ1)−

1
2

log |V1|

− T
2

log |R| − T − 1
2

log |Q| − T(p + q)
2

log 2π

(2.18)

where p and q are the dimensions of the state and output vectors x and y. However, X
is not known, but its distribution p(X | Y, θ̂k) is available from the E-step. Therefore,
we maximize the expected log-likelihood

Q = E[L] = E [logL (Y, X | θ, U)] (2.19)

Observe that Q is a sum of quadratic terms, i.e., the log-likelihood is a concave func-
tion, because the relationships in Equations 2.2 and 2.3 are linear, and the noises are
Gaussian. Thus, the parameters can be determined analytically by taking the deriva-
tive of the log-likelihood and setting it to 0; the solution is a global optimum. Since the
analytical expressions for the updated parameters are quite cumbersome, some further
shorthand notations are necessary. Let

x̂t = x̂t|T

Pt = x̂t x̂′t + V̂t|T

Pt,s = x̂t x̂′s + Cov(xt, xs)

where s, t are time step indices and

Cov(xt, xs) = V̂t|T J′s
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Lemma 1. (Cheng & Sabes, 2006) The update equations for all parameters are

[A B] =

[
T−1

∑
t=1

Pt+1,t

T−1

∑
t=1

x̂t+1u′t

] 
T−1

∑
t=1

Pt

T−1

∑
t=1

x̂tu′t
T−1

∑
t=1

ut x̂′t
T−1

∑
t=1

utu′t


−1

(2.20)

[C D] =

[
T

∑
t=1

yt x̂′t
T

∑
t=1

ytu′t

] 
T

∑
t=1

Pt

T

∑
t=1

x̂tu′t
T

∑
t=1

ut x̂′t
T

∑
t=1

utu′t


−1

(2.21)

Q =
1

T − 1

T−1

∑
t=1

(Pt+1 − APt,t+1 − But x̂′t+1) (2.22)

R =
1
T

T

∑
t=1

(yt − Cx̂t − Dut)y′t (2.23)

µ1 = x̂1 (2.24)

V1 = V̂1 (2.25)

Cheng and Sabes (2006) presented the results without proof. We provide a proof in
Appendix A.1.

The EM algorithm is summarized in Algorithm 1. It requires the system input and
output trajectory (Y and U), and returns the parameter set θ̂ and the estimated state
and output trajectory (X̂ and Ŷ). Note that the solution returned by the EM algorithm
is a local optimum—since the global optimum found at each M-step is optimal for that
M-step only, and may not correspond to the global optimum of the overall problem.

Algorithm 1 Learning a linear dynamical system with the expectation–maximization
algorithm

Require: Y, U
k = 0
Initialize θ̂0
Initialize x1 and ŷ1.
repeat

for t = 2, ..., T do
x̂t|t ← E(xt | y1, ..., yt, θ̂k) . Kalman filter (Equations 2.7 to 2.13)

end for
for t = T − 1, ..., 1 do

x̂t|T ← E(xt | y1, ..., yT, θ̂k) . RTS recursion (Equations 2.14 to 2.17)
end for
θ̂k+1 = arg maxL(Y, X | θ̂k, U) . M-Step (Theorem 1)
k = k + 1

until L
(
Y, X | θ̂k+1, U

)
−L

(
Y, X | θ̂k, U

)
≤ τ . Convergence

Return: X̂, Ŷ, θ̂
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2.3.3 Simultaneous Learning–Reconstruction

Typically, a reconstruction problem is solved in two phases: learning and reconstruc-
tion. Accordingly, the study horizon should be divided into two parts: the paleo period
(with −Tp ≤ t ≤ 0) and the instrumental period (1 ≤ t ≤ T), as illustrated in Figure
2.4a. Learning involves building a regression model for the instrumental period. Re-
construction is then carried out by feeding the paleo period’s input into the regression
model to obtain the paleo period’s output. Although this conventional approach works
well for linear regression, it is not suitable for LDS models because of two issues. First,
the EM algorithm not only learns the system parameters, but it also derives an estimate
for the initial state x1, which is necessary to commence the state transition. When the
LDS is learned with only the instrumental period’s data, the modeller faces a question
in the reconstruction phase: which initial state to use at time t = −Tp? As it turns out,
this is not a major problem. Equation 2.2 implies that the state transition is Markovian.
Thus, regardless of the initial state at time t = −Tp, the effect of the initial conditions
diminishes as the system evolves through time, and, eventually, the state trajectory
converges. One therefore just needs to discard the initial transition period.

The second, and most critical, problem arises when the paleo period meets the instru-
mental one. At this point in time, the system state may be different from the estimated
x1 (see Figure 2.4b). While the estimated θ is optimal for the original x1 (derived in
the learning phase), it may not be optimal for the new x1 (derived in the reconstruction
phase). Worse still, if the system is propagated further into the instrumental period, the
state trajectory may also be different from its original estimation in the learning phase,
effectively invalidating the learned model. It is not possible to force the system to the
desired x1 because once the system parameters are given, the system is only driven by
the input.

To solve this issue, we can drop the paleo/instrumental period delineation and provide
the EM algorithm with the entire input time series (Figure 2.4c). Since the time spans of
the input (climatic proxy) and output (instrumental data) no longer match each other,
modifications to the EM algorithm are necessary to handle the missing observations.
In the forward pass (i.e, the Kalman filter step), measurement update is skipped. In the
M-step, we make use of Lemma 2.

Lemma 2. In the M-step, only the observed part, YO (and not the missing part, YM), is nec-
essary to calculate the expected likelihood in Equation 2.19. The update equations for A, B, Q,
x1, and V1 remain the same. The update equations for C, D, and R are

[
C D

]
=

[
∑
t∈O

yt x̂′t ∑
t∈O

ytu′t
] 

∑
t∈O

Pt ∑
t∈O

x̂tu′t

∑
t∈O

ut x̂′t ∑
t∈O

utu′t


−1

(2.26)

R =
1
|O| ∑

t∈O
(yt − Cx̂t − Dut)y′t (2.27)

The proof is provided in Appendix A.2.
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Figure 2.4. Motivation for simultaneous learning-reconstruction. a) Conventional
learning-reconstruction delineation: the model is first learned using the instrumen-
tal period’s data (1 ≤ t ≤ T), and then used to reconstruct streamflow in the paleo
period (−Tp ≤ t ≤ 0). b) When this delineation is used for the linear dynamical sys-
tems model, two problems arise: (i) the initial transition period must be discarded,
and (ii) when the state trajectory is propagated from t = −Tp, its value at t = 1
may mismatch with its estimated value during the learning phase. c) Simultaneous

learning-reconstruction eliminates these problems.
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With this modification, a new estimation for y in the entire study horizon is created
at each iteration. As a result, when the EM algorithm converges, the system state and
parameters are learned, and the reconstruction is completed at the same time. Simul-
taneous learning-reconstruction is achieved. The modified algorithm is summarized in
Algorithm 2.

Algorithm 2 Simultaneous learning-reconstruction with the Expectation–
Maximization algorithm

Require: Y, U
k = 0
Initialize θ̂0
Initialize x1
repeat

for t = 2, ..., T do . Kalman filter (Equations 2.7 to 2.13)
if yt 6= NA then

x̂t|t ← E(xt | y1, ..., yt, θ̂k)
else

x̂t|t ← E(xt | y1, ..., yt−1, θ̂k) . (Equation 2.9)
end if

end for
for t = T − 1, ..., 1 do . RTS recursion (Equations 2.14 to 2.17)

x̂t|T ← E(xt | y1, ..., yT, θ̂k)
end for0
θ̂k+1 = arg maxL(YO, X | θ̂k, U) . M-Step (Theorem 2)
k = k + 1

until L
(
YO, X | θ̂k+1, U

)
−L

(
YO, X | θ̂k, U

)
≤ τ . Convergence

Return: X̂, Ŷ, θ̂

This modification brings two additional benefits. First, it enables cross-validation.
Without this modification, cross-validation could not be carried out because the origi-
nal EM algorithm does not handle missing data. The only way to validate the model
results, as seen in Shumway and Stoffer (2011) and Cheng and Sabes (2006), would be
by way of bootstrapping and hypothesis testing—a validation procedure that yields
an empirical distribution of each model parameter and determines the importance of
the input variables, but that does not provide any information on the model’s pre-
dictive skills. Second, the gap filling modification enables the learning algorithm to
handle missing data in the instrumental record itself—these missing data points can be
replaced by their best available estimates during the learning-reconstruction process.

In principle, the gap filling modification can be implemented to models with higher
dimensions (e.g. multi-site models, higher order Markov processes, or higher dimen-
sional state space with different interpretations). There are two potential issues when
LDS and its extensions are implemented. Firstly, modelers may face with numerical
stability issues in higher dimensions with a lot of missing data, as the computation re-
quires a small amount of matrix inversion (Section 2.3.2). Secondly, equifinality may
arise when different parameter sets yield the same goodness-of-fit. In this case, care
must be taken when choosing an appropriate model that can be interpreted physically.
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2.3.4 Stochastic Streamflow Generation

The LDS model formulated in Section 2.3.1 is a stochastic process model. Once the
model’s parameters are known, it can be used readily as a stochastic streamflow gen-
erator. To do so, one first generates an initial state x1 ∼ N (µ1, V1). Then, sequentially
for each time step t = 1, ..., T, the noises wt ∼ N (0, Q) and vt ∼ N (0, R) are gener-
ated; and xt+1 and yt are computed according to Equations 2.2 and 2.3. This yields one
stochastic replicate of the streamflow process and catchment state. The procedure is
repeated for the desired number of replicates.

Note that the stochastic replicates generated this way are only associated with one real-
ization of u. As with other stochastic models with exogenous inputs (e.g., linear regres-
sion and ARMAX), a hierarchical procedure can be used: one first creates stochastic
replicates of u, and, then, for each realization of u, generates replicates of y. When u is
the PDSI, generating its stochastic replicates using a time series model can be difficult
(Alley, 1984). To alleviate this, one may adopt a nonparametric resampling method,
such as the stationary bootstrap (Politis & Romano, 1994).

2.3.5 Experiment Setup

As a basis to gauge the performance of our dynamic model, we created a benchmark
reconstruction using principal component linear regression, a well-known method in
paleohydrology (cf. Hidalgo et al., 2000; Woodhouse et al., 2006). Specifically, we used
a procedure very similar to Woodhouse et al. (2006). First, we performed principal
component analysis on the 51 MADA grid points falling within 1,200 km from P.1 sta-
tion, and retained the highest principal components that cumulatively account for at
least 95% of the input variance. We then carried out a backward stepwise linear re-
gression using the retained principal components as predictors, and log-transformed
annual streamflow as predictand.

So as to have a fair comparison with the linear regression model, the same input and
output variables were used for the LDS model, that is, the principal components se-
lected for the benchmark and log-transformed annual streamflow. For this seminal
experiment, we started with a one-dimensional system state for two main reasons: this
parsimonious model works well without heavy computational load, and it simplifies
the physical interpretation. To further facilitate the physical interpretation, the log-
transformed streamflow time series was centralized by subtracting the mean, so that
the state x is centralized around zero. We adopted the MATLAB code published by
Cheng and Sabes (2006)—available at http://keck.ucsf.edu/~sabes/documents/lds-1.
0.tgz.gz—and revised it to accommodate the variant described in Section 2.3.3. Our
code is implemented in R and released as a package called ldsr (Nguyen, 2020) Since
EM is a local optimization algorithm, it may converge to a different maximum likeli-
hood for different initial values of the parameter set θ̂0. Therefore, we implemented a
random search for the initial values of A, B, C, D, Q and R—in the range from -1 to 1—
and selected the initial values that yielded the highest likelihood. The ldsr package runs
this search with parallel processors to speed up the search process. We fixed the value
of the algorithm convergence threshold τ equal to 10−5 (Shumway & Stoffer, 2011, p.

http://keck.ucsf.edu/~sabes/documents/lds-1.0.tgz.gz
http://keck.ucsf.edu/~sabes/documents/lds-1.0.tgz.gz
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342) and x1 ∼ N (0, 1). All experiments were carried out on a quad-core Intel i7-6700
CPU @ 3.40 GHz with 32 GB RAM running Microsoft Windows 10.

Both the benchmark and the LDS model were cross-validated with a leave-10%-out
cross validation scheme. The reconstruction skills were gauged using coefficient of
determination (R2), normalized root mean squared error (nRMSE), coefficient of effi-
ciency (CE), and reduction of error (RE). The last two metrics are commonly used in
dendroclimatology (Fritts, 1976; E. R. Cook et al., 1999; Nash & Sutcliffe, 1970). They
are different in the way that the residual sum of squares is normalized. Specifically, let
V be the validation set, then

RE = 1−
∑
t∈V

(yt − ŷt)
2

∑
t∈V

(yt − yc)
2 (2.28)

and

CE = 1−
∑
t∈V

(yt − ŷt)
2

∑
t∈V

(yt − yv)
2 (2.29)

where yc is the mean streamflow in the calibration set, and yv is the mean streamflow in
the validation set. Thus, while the Nash-Sutcliffe efficiency is a single metric that mea-
sures the model performance on the whole training set, RE and CE separates the model
performance into two separate measures: fitness, in the case of RE, and predictive skill,
in the case of CE.

Finally, we generated 100 stochastic replicates for the annual streamflow and catchment
state following the procedure in Section 2.3.4. Each replicate has the same length as
the original reconstruction (406 years). Since our purpose here is only to demonstrate
that the LDS model can be used directly as a stochastic streamflow generator, we did
not consider the case requiring a stochastic model for the PDSI. Also, 100 replicates
should be sufficient to capture the bulk of white noise variability for our demonstration
purpose (more replicates may be needed for applications that are sensitive to extreme
values).

2.4 Results and Discussion

We first report the results obtained with the LDS model on the instrumental period
(1921–2005), and compared them against those provided by a conventional principal
component linear regression. Then, we illustrate the reconstructed catchment state
and streamflow time series for the entire study period (1600–2005), and discuss their
relation with El Niño Southern Oscillation, as well as other climate drivers. Finally, we
analyze the stochastic replicates from the LDS model.
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2.4.1 Model Performance

On average, LDS has higher R2 than linear regression while the other metrics have
similar mean values for both models (Figure 2.5). LDS, being a more extensive model,
may have better skill but may also be more prone to overfitting. On the full data set,
however, LDS obtained better streamflow estimation (Figure 2.6). The differences lie
mainly where linear regression overestimated or underestimated streamflow for sev-
eral consecutive years; see for example the periods 1921–1930 and 1948–1954 (Figure
2.6a). This improvement could be attributed to the use of a system state variable—and
state-transition equation—in the LDS model. Mathematically, the system state x is a fil-
tered and smoothed version of streamflow; we interpret it as a flow regime state. Thus,
the flow regime state x is a quantity that characterizes the annual flow volume com-
pared to the long term mean: x > 0 indicates a wet regime, and x < 0 a dry regime.
The state trajectory revealed regime-like behaviour (cf. Turner & Galelli, 2016): the
catchment stayed for years (sometimes decades) in one regime, and then shifted to an-
other regime (Figure 2.6b). By matching the timing of the state trajectory in Figure 2.6b
and the streamflow trajectory in Figure 2.6a, one observes that linear regression tended
to overestimate streamflow when the catchment was in a dry regime (e.g., 1921-1930)
and to underestimate it when the catchment was wet (e.g., 1948–1954), while the LDS
model matched observation better. This shows that information about the catchment
state may be beneficial.

The catchment state contributes to the streamflow prediction in the LDS model by
means of Equation 2.3, which states that the system output is the sum of two terms:
the state term Cxt and the input term Dut—in other words, streamflow is the result
of two components related to the catchment state and exogenous inputs. Given this
relationship, the modified EM algorithm model derived the best combination of the
state coefficient C and the input-output coefficients D. As C was found positive (0.085),
a quantity of |Cxt| was added to (subtracted from) the input term Dut when xt > 0
(xt < 0). But this increase (decrease) did not lead to overestimation (underestimation)
because the algorithm derived the input coefficients D that have the same signs, but
smaller magnitude, than the linear regression coefficients β (Table 2.2). Consequently,
the LDS model was able to account for the situations in which the catchment is still wet
(dry) following a previous wet (dry) year, although the PDSI for that particular year
may not be high (low).

Table 2.2. Comparing exogenous input coefficients for linear regression and linear
dynamical systems (LDS) models.

Principal components βa Db

PC1 -0.0317 -0.0282
PC3 -0.0271 -0.0212
PC6 -0.0615 -0.0513
PC9 -0.1265 -0.1142
PC12 -0.1122 -0.0830
a Linear regression coefficients (Equation 2.1)
b LDS coefficients (Equation (2.3)
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Figure 2.5. Distribution of performance scores in cross-validation runs obtained by
linear regression and linear dynamical systems (LDS) models. Gray dots represent the
value of each score obtained during the validation runs; red dots represent the average
value of the scores across all runs. R2, RE, CE, and nRMSE denote the coefficient of
determination, reduction of error, coefficient of efficiency, and normalized root mean

squared error, respectively.

Residual analysis (Figure 2.7) showed that the assumption of independent Gaussian
noise was not violated in either models. However, large deviations from Gaussian
were observed in both positive and negative tails for the linear regression residuals.
For positive residuals (overestimation), the two points of large deviation corresponded
to the years 1931 and 1992, during both of which the catchment was in a very dry
flow regime (Figure 2.6b). For negative residuals (underestimation), the two points
of large deviation corresponded to the years 1973 and 2005, during both of which the
catchment was in a very wet flow regime (Figure 2.6b). These large deviations were
much less apparent in the LDS results where the flow regime was taken into account,
although one may observe that when residuals are transformed from the log space
back to the original streamflow space, the deviation is still large for year 2005. Thus,
residual analysis further corroborates that catchment dynamics should not be neglected
in streamflow reconstruction.



Chapter 2. Streamflow Reconstruction with Linear Dynamical Systems 27

1000

2000

3000

4000

5000

A
nn

ua
l s

tr
ea

m
flo

w
 [m

ill
io

n 
m

³]
Instrumental LDS Linear regression

−5.0

−2.5

0.0

2.5

5.0

7.5

1920 1940 1960 1980 2000

C
at

ch
m

en
t s

ta
te

 [−
]

Figure 2.6. Results of the linear dynamical systems (LDS) model in the instrumental
period: (a) Reconstructed streamflow, plotted with 95% confidence interval, compared
with the instrumental time series and the results from a benchmark linear regression
model (Section 2.3.5); b) Trajectory of the system state (flow regime) with 95% confi-
dence interval. LDS generally provided higher streamflow estimates during periods
of high flow regime (1935–1955, 1968–1978), and lower streamflow estimates during

periods of low flow regime (1921–1935, 1980–1995).

2.4.2 A Reconstructed Hydrological History of the Ping River

Results revealed a history of droughts, floods and regime shifts in the Ping River over
the last four centuries (1600–2005). The LDS model and linear regression yielded simi-
lar results in normal years (i.e., when the flow regime is about zero), but the LDS model
provided lower streamflow estimates in dry years and higher streamflow estimates in
wet years (Figure 2.8a). Most importantly, the LDS model provided a drier picture
than what was seen in linear regression results, especially during the low flow periods.
This result may have important implications to water management—for instance, in
the form of more conservative operating policies for the Bhumibol Reservoir.

The reconstructed flow regime shows different patterns of regime shift over time (Fig-
ure 2.8b). At first, the flow regime shifted infrequently in the 17th century; there were
four main wet and dry epochs that lasted more than a decade (an epoch is a period
where streamflow persists in the same regime). The flow regime then shifted more
rapidly in the 18th and 19th century, where each wet or dry epoch lasted only a few
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Figure 2.7. Residual analysis results for the linear regression (left column) and lin-
ear dynamical systems (right column) models. The analysis was based on the log-
transformed streamflow. Panels (a) and (b) show the quantile-quantile plots of the
residuals compared to Gaussian distributions; both models’ residuals are close to
Gaussian, but larger deviations are observed in the tails for linear regression. Pan-
els (c) and (d) show the autocorrelation function (ACF) of the residuals; no significant

autocorrelations are observed.

years. The pattern of regime shift is most varied in the 20th century: there were pro-
longed wet and dry epochs of decadal to bi-decadal scales (similarly to the 17th cen-
tury). However, the flow regime fluctuated more vigorously than the previous three
centuries. As a result, the last century contains both the wettest period (including the
wettest year) and the driest year on record. During the wettest period (1966–1979), two
consecutive strong La Niña events occurred, and the driest year (1998) corresponded
to a very strong El Niño event. We discuss this correspondence further in Section 2.4.3.
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Figure 2.8. Full reconstruction results: a) Reconstructed streamflow, compared with
linear regression; b) Flow regime state trajectory. The grey bands are the 95% con-
fidence intervals. The red lines indicate the mean values of the full reconstruction.
In panel b, the orange bands are the megadroughts discussed in E. R. Cook et al.
(2010a), namely the Ming Dynasty Drought (1638–1641), the Strange Parallels Drought
(1756–1768), the East India Drought (1790, 1792–1796) and the Victorian Great Drought
(1876–1878). The yellow bands are the dry epochs revealed by the flow regime state
variable in the paleo period (a dry epoch is a period of consecutive negative flow

regime).

The LDS model results are in agreement with the MADA, in that all four Asian mega-
droughts in the last millennium each impacted northern Thailand (E. R. Cook et al.,
2010a). These are: the Ming Dynasty Drought (1638–1641), the Strange Parallels Drought
(1756–1768), the East India Drought (1790, 1792–1796) and the Victorian Great Drought
(1876–1878). But, more interestingly, while the MADA provided a geographical foot-
print of these droughts, our reconstruction provided more insights pertinent to the Ping
River (Figure 2.8). The Ming Dynasty Drought seems to have triggered, or at least con-
tributed, to a prolonged dry epoch in the Ping. By 1638, the Ping River was coming
out of a short dry epoch. The occurrence of the Ming Dynasty Drought then coincided
with three years of declining streamflow, which set the Ping back to a dry epoch that
took two decades to vanish. Throughout this drought, streamflow stayed below the
mean level. The Strange Parallels Drought was in the middle of several decades where
streamflow was mostly at or below normal, and the flow regime was mostly around
zero. Anchukaitis et al. (2011) suggested that the Strange Parallels is closely related to
the Indian Ocean Dipole (IOD), and we found that the same relationship holds for the
Ping River. Comparing the state trajectory in Figure 2.8b with page 40 in Anchukaitis et
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al. (2011), we observe that the first half of the drought, where flow regime was around
zero, is consistent with a negative phase in the IOD, and the spike at the end is con-
sistent with a brief positive phase in the IOD. The flow regime history suggested that
the Strange Paralells was hydrologically mild, yet it coincided with a tumultuous part
of Southeast Asia’s history (Lieberman, 2003; E. R. Cook et al., 2010a), indicating that
the socio-economic damage of this drought may have been more serious than its hy-
drologic impact. The East India Drought coincided with a dry epoch in the Ping River,
but this drought seemed to have a lesser impact in Thailand than other megadroughts.
The Victorian Great Drought was similar to the Ming Dynasty Drought, in that it also
set into motion a dry epoch. The MADA indicated a meteorological drought in the
whole Southeast Asia between 1876–1878 while the flow regime indicated a hydrolog-
ical drought in Thailand between 1878–1886. This suggests that the catchment may
have seen a transition from a meteorological drought to a hydrological one. The flow
regime also indicated a major drought between 1687–1696 that was not identified as a
megadrought in E. R. Cook et al. (2010a), suggesting that this drought was more local-
ized to Thailand. It should be noted that the PDSI is a meteorological drought index
(W. C. Palmer, 1965; Alley, 1984) that does not always reflect hydrological droughts
(Mishra & Singh, 2010). Hence, droughts identified by the PDSI and those identified
by the flow regime may have similarities and differences. This implies that a regional
drought footprint and a local streamflow reconstruction can complement each other to
provide better understanding, as we demonstrated here.

The LDS results also identified multiple wet epochs in the three centuries preceding the
instrumental records, with several pluvial years having flow comparable to the highest
ones in the instrumental period (Figure 2.8). Notably, a prolonged wet epoch occurred
between 1659–1672, consistent with a period of seven floods circa 1658 ± 7 years, iden-
tified in a paleoflood study using analyses of river sediments [Wasson, 2017, personal
communication]. The same study also identified a major flood in 1831, consistent with
the wet epoch between 1830–1838 as shown in the state trajectory. This result some-
what reflects the flood generation mechanism of the Ping River, where floods are due
to heavy rainfall events occurring over a wet catchment. It should also be noted that
the sediment study identified peak discharge events, while we reconstructed annual
streamflow. Maximum annual flow volume and peak discharge may not necessarily
occur in the same year, but our results showed that the catchment stayed in the wet
regime several years after a major flood.

2.4.3 Modes of Streamflow Variability

To characterize the most important temporal modes of variability contained in the re-
constructed streamflow time series, we carried out a wavelet analysis using the Morlet
wavelet (Roesch & Schmidbauer, 2014). We also applied the same technique to the re-
constructed Sea Surface Temperature (SST) anomalies in the Eastern Pacific (Tierney
et al., 2015). As shown in Figure 2.9, reconstructed streamflow shows a mode of vari-
ability that coincides with the frequency of the El Niño Southern Oscillation (ENSO)—
about 2 to 7 year—during the 17th century, early 18th century and, intermittently, 20th
century. This result is consistent with previous studies for Thailand, Vietnam, and
Southeast Asia (i.e., Buckley et al. (2007b), Sano et al. (2009), and Räsänen et al. (2016)),
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which suggest that positive ENSO anomalies result in reduced PDSI, and, hence, re-
duced precipitation. Yet, our results do not indicate a perfect match between inter-
annual variability in SST anomalies and reconstructed streamflow. This may be ex-
plained by the fact that SST anomalies in the the Eastern Pacific do not always lead to
ENSO events (Dunbar et al., 1994; Buckley et al., 2007b). Furthermore, Singhrattna et
al. (2005) reported that the effect of ENSO on the Thailand summer monsoon exhibits
time dependence. In particular, the same authors showed that the relationship be-
tween ENSO and Thailand rainfall became stronger after the 1980s; this might explain
the steady ENSO-like temporal mode of variability we observe for the reconstructed
streamflow during that period.

Frequency analysis results for the reconstructed streamflow also show features of inter-
decadal variance in the 17th, 19th, and 20th century, which are consistent with the
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Figure 2.9. Wavelet analysis of a) Reconstructed streamflow; and b) Reconstructed
Eastern Pacific SST anomalies (Tierney et al. (2015)). The colour bars indicate the
wavelet power. (Values in the fainted region are outside of the cone of influence and

should not be interpreted.)
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prolonged wet and dry epochs described in Section 2.4.2. As noted in previous stud-
ies (Buckley et al., 2007b; Sano et al., 2009), these results indicate that other climate
drivers may cause decadal streamflow variability in region. For instance, Sano et al.
(2009) found a significant positive correlation between tree-ring reconstructions in Viet-
nam and SST in the northern Pacific Ocean, suggesting a possible link with the Pacific
Decadal Oscillation (Mantua & Hare, 2002). The Indian Ocean Dipole (Saji et al., 1999)
have also been found to be related to floods and droughts in Southeast Asia (Delgado
et al., 2012; Räsänen & Kummu, 2013). This phenomenon may also influence stream-
flow variability in the Ping River, as indicated in our discussion on the Strange Parallels
Drought (Section 2.4.2).

2.4.4 Stochastic Replicates

Figure 2.10 shows the stochastic ensemble generated by simulating the LDS model with
different realizations of the noise processes w and v according to Equations 2.2 and 2.3.
The ensemble contains a wide range of high and low values enveloping the recon-
structed time series of both streamflow and flow regime. Interestingly, the envelopes
follow the shape of the reconstructions closely: large floods and droughts tend to occur
at the same time in the replicates as in the reconstruction. Keeping in mind that these
replicates were generated with the historical exogenous input, i.e., the same inputs that
drove the variability of the reconstructions (Section 2.3.4), the ensemble envelopes indi-
cate a strong input-driven dynamics: while the noise processes (which represent factors
unaccounted for in the model) may lead to different streamflow and flow regime val-
ues, they cannot mask away the general trajectory dictated by the exogenous inputs.
This implies that the shape of the reconstructed trajectories and the corresponding wet
and dry states are robust.

2.5 Conclusions

In this chapter, we contributed a technique for streamflow reconstruction based on the
state-space representation of a discrete, linear dynamical system, which was learned
using a novel variant of the Expectation-Maximization algorithm. The use of a state-
space representation yields two key advantages: it estimates the trajectory of the catch-
ment state during the paleo and instrumental periods, and it accounts for the effect of
both catchment state and climate proxies on the streamflow generation process. The
technique was tested to reconstruct 406 years of annual streamflow for the Ping River,
northern Thailand, using the Monsoon Asia Drought Atlas gridded PDSI data set (E. R.
Cook et al., 2010a) as the paleoclimate proxy. Our reconstruction identified several pro-
longed pluvials and droughts in the paleo period. Somewhat differently from most
previous works, we found that the instrumental record contains both the wettest pe-
riod 1965–1979) and the driest year (1998). Our results are aligned with earlier works
(e.g., Ho et al., 2015; Tozer et al., 2016) in that flood and drought analyses based on
reconstructed streamflow may yield a different picture from similar analyses using in-
strumental data. Therefore, as seen with other regions (E. R. Cook et al., 2010b; Kiem
et al., 2016; Johnson et al., 2016), there is a need of more reconstruction studies in South-
east Asia to better understand these natural hazards.
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Figure 2.10. Stochastic replicates generated from the LDS model. The black lines are
the original reconstructions (Section 2.4.2), and the gray lines are the 100 stochastic
replicates, which were generated by adding noise to the original reconstruction ac-

cording to Equations 2.2 and 2.3.

The model’s reconstruction in the instrumental period is reliable, supporting the find-
ings by Ho et al. (2016) that a paleodrought record can be used to reconstruct stream-
flow, and by Watson and Luckman (2005) that gridded PDSI data sets are a rich source
of information to investigate hydroclimatic variability. A qualitative comparison be-
tween LDS and linear regression on pluvials and droughts suggests that it is important
to account for catchment dynamics, especially in systems characterized by complex
streamflow generation processes. Additionally, our linear dynamical system model
has several desirable features. (i) The reconstructed trajectory of the state variable pro-
vides more insights about the catchment’s history than the reconstructed streamflow
alone. For instance, we have shown that the model’s state variable reveals regime-like
behavior of streamflow. (ii) The Expectation-Maximization algorithm used to learn the
model is computationally efficient, and does not require any assumption about serial
dependence. (iii) The model can be readily used as a stochastic streamflow generator,
and it is extendable to multi-site applications.

A natural extension of our technique is the identification of a nonlinear dynamical sys-
tem model, in which the state and output equations are nonlinear. In this case, as sug-
gested by Roweis and Ghahramani (2001), the Kalman smoother in the E-step needs to
be replaced by an extended Kalman smoother, and the global optimizer in the M-step
can no longer be determined analytically. Such model is thus more computationally ex-
pensive, but it may yield better results—particularly in catchments that present strong
nonlinearities associated to the streamflow generation process. The benefit and cost of
such nonlinear models should be investigated. Another possible extension is to use a
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multi-dimensional state vector, as only one state variable was used here. It is perceiv-
able that multiple state variables may contain more information or improve model per-
formance; how to interpret them remains an open question. A third extension could be
to explore models in which the parameters A, B, C, D, Q and R change over time. Such
time-varying models may be used to account for changes in catchment characteristics,
e.g., due to changes in land use/ land cover. When applying LDS and its extensions,
modellers should be aware of potential issues such as numerical stability and model
equifinality.

Perhaps the most relevant application of this work that should be the topic of imme-
diate research is to transfer the added understanding of catchment dynamics to wa-
ter management practices, such as reservoir operation models. Recently, Turner and
Galelli (2016) and Ng et al. (2017) have shown that regime-like behaviour in streamflow
time series contributes to the sub-optimality of reservoir operating policies derived
with conventional optimization methods; on the flip side, better operating policies can
be obtained by incorporating a regime state variable into reservoir operations. In addi-
tion, robust operating policies require longer streamflow records, since more training
data are likely to provide more robust operating policies. Reconstruction studies that
model regime state, such as this work, address both needs.

The encouraging results and the desirable features of the LDS model suggest that it can
replace linear regression in future streamflow reconstruction studies. Most importantly,
the model’s regime state, not available in conventional methods, may add value to
downstream applications such as reservoir operations studies. Through the findings in
this work, not only has the values of streamflow reconstruction been strengthened, but
its potential applications have also been widened.
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Chapter 3

Multi-Proxy, Multi-Season
Streamflow Reconstruction with
Mass Balance Adjustment

Preprint

Nguyen, H. T. T., Galelli, S., Xu, C., & Buckley, B. M. (2020a). Multi-Proxy, Multi-
Season Streamflow Reconstruction with Mass Balance Adjustment. Earth and Space Sci-
ence Archive. https://doi.org/10.1002/essoar.10504791.1 (submitted to Water Resources
Research).

3.1 Introduction

Dendrohydrology, the study of past hydroclimate using tree rings, has been largely
motivated by water resources management. The field traces back to Hardman and Reil
(1936), who recognized that instrumental records were too short to understand drought
trends, and demonstrated that better understanding could be gained from exploring
the links between tree rings and streamflow. Their work was motivated by contempo-
rary droughts that affected irrigation. Also to understand droughts, Schulman (1945)
established a tree ring chronology for the Colorado River Basin, this time motivated by
the war effort—to examine Hoover Dam’s hydropower production reliability to meet
wartime demand. While these early works stopped at studying tree ring indices, den-
drohydrology took a big step when Stockton (1971), leveraging advanced multivariate
techniques (Fritts et al., 1971), showed that reconstructing streamflow record back in
time was feasible—long term surface water availability could now be quantified di-
rectly. Soon, multiple streamflow reconstructions were developed across the Colorado
River Basin (Stockton & Jacoby, 1976), revealing the shortcomings of the Colorado River
Compacts (Woodhouse et al., 2006), and providing insights about long term hydrology
of Lake Powell, the United States’ second largest reservoir.

Streamflow reconstruction has become “an important planning and research tool” in
water resources management (Meko & Woodhouse, 2011). Yet, its use in practical,
operational aspects of water management is still limited in scope and effectiveness.
That is because reconstructions often target specific components of the hydrograph
that best correlated with tree ring proxies. Perhaps most commonly, reconstructions

https://doi.org/10.1002/essoar.10504791.1
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Figure 3.1. Ratio between monthly flow and annual flow for each month at station P.1,
plot against the annual flow volume. In each month, for a similar range of annual flow,
there can be a wide range of monthly flow ratios. This demonstrates that statistical

disaggregation based on the constant ratio assumption may not always hold.

from ring width target the growth season (e.g., D’Arrigo et al., 2011a; Güner et al.,
2017). Another example is given by reconstructions using tree ring cellulose δ18O and
targeting peak flow (C. Xu et al., 2019). These reconstructions reveal important insights
about the hydroclimate, but do not provide the total annual surface water availability.
Other works target the annual flow (e.g., Rao et al., 2018; Nguyen & Galelli, 2018),
but even so, the annual resolution is not suitable for making operational decisions at
finer time scales—crop planning, for instance, is often based on seasonal flow; reservoir
releases are determined at monthly or even daily time steps.

The water resources community recognizes the need for sub-annual reconstructions.
Attempts towards this goal have relied on statistical disaggregation, assuming some
statistical relationships between the sub-annual and annual flows (Prairie et al., 2008;
Sauchyn & Ilich, 2017). These assumptions are reasonable but not always valid (Figure
3.1). More importantly, paleoclimatic proxies are not used in these methods, and their
rich information are not utilized. Recent progress was made by Stagge et al. (2018),
who used multi-species chronologies as additional inputs to disaggregation, showing
that these inputs can be weighted differently for each month to improve the monthly
reconstructions.
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The works of Stagge et al. (2018), C. Xu et al. (2019), and others discussed above sug-
gest that different proxies have different seasonal sensitivities. Therefore, instead of
disaggregation, we propose to use multiple proxies to simultaneously reconstruct sub-
annual (e.g., seasonal) and annual flows. Two challenges arise. How to combine prox-
ies optimally for different targets? And how to ensure that the seasonal flows add
up to the annual flow, i.e., how to account for mass balance? We develop a unified
framework to address both challenges. Mass balance is accounted for by a term in the
regression formulation that penalizes the differences between total seasonal flow and
annual flow (Section 3.3.1), and proxy combination is optimized with an automatic in-
put selection scheme (Section 3.3.2). We test the framework with a case study in the
Chao Phraya River Basin, Thailand, pooling together a multi-species network of ring
width and cellulose δ18O chronologies from Southeast Asia (Section 3.2). This work
is one step closer towards operational usability of streamflow reconstruction in water
resources management.

3.2 Study Site and Data

3.2.1 The Southeast Asian Dendrochronology Network

Over the past three decades, an extensive network of tree ring chronologies have been
developed in mainland Southeast Asia. This network has been instrumental in improv-
ing our understanding of Southeast Asia’s hydroclimate and history. For example, tree
ring data from Thailand and northern Vietnam (Buckley et al., 2007b; Sano et al., 2009)
revealed a multidecadal drought, what is later known as the Strange Parallel Droughts
(E. R. Cook et al., 2010a), which coincided with a tumultuous period of Southeast Asian
history (Lieberman, 2003; Lieberman & Buckley, 2012). Further back in time, tree ring
data from southern Vietnam linked megadroughts in the 14th and 15th centuries to the
demise of the Angkor Civilization (Buckley et al., 2010; Buckley et al., 2014). These
findings are among many insights that the Southeast Asian Dendrochronology Net-
work has brought forth.

In this work, we use twenty tree ring chronologies from Vietnam, Laos, Cambodia,
Thailand, and Myanmar (Figure 3.2). The chronologies at Kirirom, Petchaburi, Pha
Taem, and Wiang Haeng are published here for the first time. The details of the chronolo-
gies are provided in Table 3.1. The common period of most chronologies in our network
is 1748–2005 (Figure B.1), and is the same as the time span of our δ18O network. Several
chronologies are some decades shorter. Following Stagge et al. (2018), we imputed the
missing years using the R package missMDA (Josse & Husson, 2016) (see Figure B.2).
We imputed the tree ring data instead of building nested models because nesting is not
applicable in our reconstruction framework. As we shall explain in Section 3.3.1, the
framework is designed to account for mass balance, tuning the regression parameters
such that the total sub-annual flow matches the annual flow closely. With nesting, the
final variance correction can disrupt the mass balance.
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Figure 3.2. Map of the study region, showing the Chao Phraya River, the proxy net-
work, and the target streamflow station.

3.2.2 Tree ring cellulose stable oxygen isotope

We use four tree ring cellulose oxygen isotope (δ18O) chronologies that were developed
in Laos, Thailand, and Vietnam over the past decade (Figure 3.2 and Table 3.2). δ18O
exhibits strong mechanical and statistical relationship with the hydroclimate (C. Xu et
al., 2011; Sano et al., 2012), and has been used to reconstruct wet season precipitation
in the region (C. Xu et al., 2015; C. Xu et al., 2018). δ18O in Laos was also found to have
significant negative correlation with Mekong River’s water level (C. Xu et al., 2013),
suggesting promising hydrological applications. Finally, three δ18O chronologies were
used to reconstruct Chao Phraya River peak season flow (C. Xu et al., 2019). These
works support recent literature (Treydte et al., 2006; G. Xu et al., 2019) that δ18O has in-
deed moved beyond “potential” (Gagen et al., 2011), and earned its place as a practical,
valuable paleoclimate proxy.

3.2.3 Streamflow

The Chao Phraya River Basin covers 30% of Thailand’s area, and is home to about 25
million people. Thailand’s largest reservoir, the Bhumibol (active capacity 9.7 km3),
lies on the Ping River tributary. Reliable operations of this reservoir require accurate
assessment of inflow availability, on both inter- and intra-annual scales.
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Table 3.1. Metadata of tree ring width chronologies.

Site Longitude Latitude Species References

Bidoup 108.45 11.97 Fokienia hodginsii Buckley et al. (2010)
Chin Hills 93.50 22.17 Pinus kesiya Rao (2020)
Kim Hy 106.04 22.25 Pseudotsuga sinensis Hansen et al. (2017)
Kirirom 104.10 11.95 Pinus merkusii This studya

Kon Ka Kinh 108.18 14.91 Fokienia hodginsii Buckley et al. (2019)
Mae Hong Son 98.93 19.28 Tectona grandis Buckley et al. (2007b)
Maingtha 96.20 23.20 Tectona grandis D’Arrigo et al. (2011b)
Mu Cang Chai 104.06 21.40 Fokienia hodginsii Sano et al. (2009)
Nam Nao 101.57 16.73 Pinus merkusii Buckley et al. (1995)
Petchaburi 99.56 12.96 Pinus merkusii This study
Pha Taem 105.00 15.70 Pinus merkusii This study
Phou Khao Khouay 102.79 18.32 Pinus merkusii Buckley et al. (2007a)
Phu Kradung 101.88 16.90 Pinus merkusii D’Arrigo et al. (1997)
Phu Toei 99.43 14.98 Pinus merkusii E. R. Cook et al. (2010a)
Pu Mat 104.85 19.06 Fokienia hodginsii Buckley et al. (2019)
Quang Nam 107.33 15.81 Fokienia hodginsii Buckley et al. (2017)
Salaeng Luang 100.55 16.75 Pinus merkusii Buckley et al. (1995)
San Luang 97.93 19.10 Pinus merkusii E. R. Cook et al. (2010a)
Wat Chan 98.23 19.02 Pinus merkusii Buckley et al. (1995)
Wiang Haeng 98.64 19.56 Pinus merkusii This study

a Several cores from this site were analyzed by Zhu et al. (2012) for δ18O but the ring width
chronology has not been published until now.

Streamflow station P.1 is located upstream of Bhumibol Reservoir. P.1 has the longest
and most complete record in Thailand: daily data are available from April 1921–present.
Since 1985, the river upstream of P.1 has been impounded by the Mae Ngat Dam, which,
at full capacity, stores about 14% of P.1’s mean annual flow. Dam operations modify the
seasonal streamflow patterns, thereby interfering with the proxy-streamflow relation-
ship. Therefore, we naturalized the streamflow data from 1985. The naturalization pro-
cess is described in Appendix B.2.3. After naturalization, we aggregated daily data into
dry season (November–June), wet season (July–October), and water year (November–
October). The season delineation was determined by the method of B. I. Cook and
Buckley (2009) (Appendix B.2.2). To match the proxies’ time span, we finally used the

Table 3.2. Metadata of δ18O chronologies.

Site Longitude Latitude Species References

Mae Hong Son 98.93 19.28 Pinus merkusii C. Xu et al. (2015)
Mu Cang Chai 104.06 21.40 Fokienia hodginsii Sano et al. (2012)
Phou Khao Khouay 102.79 18.32 Pinus merkusii C. Xu et al. (2019)
Umpang 98.87 16.09 Pinus merkusii C. Xu et al. (2018)
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streamflow data from November 1921 to October 2005.

3.2.4 Proxy–Streamflow Correlations

As a preliminary investigation, we performed correlation analyses between streamflow
and proxy data. Correlations are calculated at different lags: l = −2 to +2 years. Neg-
ative lags account for the case when trees use stored carbon from previous years, and
positive lags for the case when the catchment’s runoff processes are slower than precip-
itation inputs (Stockton & Jacoby, 1976; Meko et al., 2007). For robustness, we repeated
the correlation analysis 1,000 times using the stationary bootstrap (Politis & Romano,
1994). In the following discussion we refer to the median bootstrap correlations (Figure
3.3).

Among the ring width sites, there are multiple correlation patterns (Figure 3.3a): some
sites such as Chin Hills and Phu Toei correlate positively, while others (e.g., Phou Khao
Khouay) correlate negatively. Peculiarly, the Mae Hong Son site displays significant
negative correlation at l = −2 but significant positive correlations at l = 0 and l = 2.
Five sites do not correlate with streamflow at all. These various patterns suggest that
the ring width–streamflow relationship is complex and “noisy”. A large number of
sites are thus required to extract the strongest signals.

Unlike ring width, δ18O displays more consistent correlation patterns (Figure 3.3b): all
significant correlations are negative, and the strongest correlations are often observed
at l = 0. Some correlations have magnitudes larger than 0.5, while the largest corre-
lation magnitude in ring width is only 0.36. These observations corroborate that δ18O
chronologies may contain stronger climate signals than do ring width chronologies (C.
Xu et al., 2019; Gagen et al., 2011).

In general, we observe that ring width tends to correlate more strongly with dry season
flow than with wet season flow. Conversely, δ18O tends to correlate more strongly with
wet season flow than with dry season flow. Both proxies correlate well with annual
flow. The proxy-streamflow correlations observed here are also in agreement with the
proxy-precipitation correlation analysis (Appendix B.3). Both analyses show that tree
ring proxies have different strength and sensitivity to different parts of the hydrograph,
and have the potential to be combined for better seasonal reconstructions.

3.3 Reconstruction Framework

To build reconstruction models, we define an input as a chronology–lag combination
that significantly correlates with streamflow. For instance, some inputs for the annual
reconstruction are Chin Hills ring-width at lag -2, and Umpang δ18O at lag 0 (Figure
3.3). For P.1, there are 19 inputs for the dry season, 28 for the wet season, and 30 for the
water year.

The reconstruction framework consists of two main modules: Regression and Input
Selection. In Regression (Section 3.3.1), the selected inputs for each target are given, and
we find the regression coefficients that best match the targets while accounting for mass
balance simultaneously, using a penalized least squares formulation. In Input Selection
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Figure 3.3. Streamflow–proxy correlations. The error bars show the 5th–95th boot-
strapped empirical quantiles obtained from 1,000 replicates, using the stationary boot-
strap (Politis & Romano, 1994). The dots indicate the medians. Lag l denotes correla-

tions between proxy at year t and streamflow at year t + l.
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(Section 3.3.2), we find the best subset of inputs that minimizes the penalized least
squares. The two modules are unified in a nested optimization framework that includes
a rigorous cross-validation scheme to assess reconstruction skills (Section 3.3.3).

3.3.1 Mass-balance-adjusted Regression

Assume that we have a matrix Ud whose columns contain the selected inputs for the
dry season. We first need to remove multicollinearity within Ud. A common approach
in dendrohydrology is to perform Principal Component Analysis (PCA) on Ud, then
reduce the set of principal components (PCs) to a parsimonious subset that is most
relevant to the streamflow target (Hidalgo et al., 2000; Coulthard et al., 2016). Here,
we use a backward stepwise PC selection routine (Woodhouse et al., 2006). This trans-
formation from the selected inputs to the selected PCs, Xd, is denoted as the function
g(.):

Xd = g(Ud) (3.1)

Similarly, given the selected inputs Uw for the wet season and Uq for the water year,
we apply g(.) to get

Xw = g(Uw) (3.2)
Xq = g(Uq) (3.3)

Now, let yd, yw, and yq be the target time series of dry season, wet season, and annual
streamflow, respectively (these targets can be log-transformed when necessary). Re-
constructing streamflow for the three targets means solving the following regression
equations:

yd = Xdβd + εd (3.4)
yw = Xwβw + εw (3.5)
yq = Xqβq + εq (3.6)

where βd, βw, and βq are the corresponding regression coefficients; and εd, εw, and εq
are white noise.

Next, let

y =

yd
yw
yq

 , X =

Xd
Xw

Xq

 , β =

βd
βw
βq

 , and ε =

εd
εw
εq

 . (3.7)

Equations 3.4–3.6 can then be converted to a more compact form
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y = Xβ + ε. (3.8)

Equation 3.8 has the canonical form of linear regression. It can be solved as a least-
squares problem:

min
β

J1 = (y− Xβ)′(y− Xβ), (3.9)

yielding the solution

β = (X′X)−1X′y. (3.10)

Solving Equation 3.8 is equivalent to solving Equations 3.4–3.6 simultaneously. The
three regression problems in Equations 3.4–3.6 are independent of one another, and the
above formulation places no constraints to match the sum of the seasonal flows to the
annual flow. Therefore, such formulation can yield large differences in the annual mass
balance. As we shall see later, this happens at station P.1.

To account for mass balance, it is tempting to impose a constraint,

Xdβd + Xwβw = Xqβq. (3.11)

But, Equation 3.11 is often overdetermined: it is a system of T equations, one for each
year, and we almost always have more equations than unknowns in a regression prob-
lem. Instead, we can add to the objective function in Equation 3.9 a penalty term that
is based on the differences (δ) between the LHS and the RHS of Equation 3.11.

δ = Xdβd + Xwβw − Xqβq. (3.12)

If the reconstructions involve log-transformed flows, the mass difference is

δt = log
(

exp(xd,tβd) + exp(xw,tβw)
)
−xq,tβq ∀t = 1, ..., T. (3.13)

Just as we minimize the squared differences between prediction and observation, we
also minimize the squared mass differences. Finally, we add a weight λ to represent
the importance of the penalty term, and obtain a new objective function

min
β

J2 = (y− Xβ)′(y− Xβ) + λδ′δ (3.14)

We call this the penalized least squares problem. Observe that when λ = 0, the penalty
term disappears, and the penalized least squares problem becomes the canonical least
squares problem. The higher λ is, the more important the penalty becomes.
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Lemma 3. Without flow transformation, the analytical solution of Equation 3.14 is

β = (X′X + λA′A)−1X′y (3.15)

where A =
[
Xd Xw − Xq

]
.

The proof is provided in Appendix B.4.

When log-transformations are involved, δ is not linear, and Equation 3.14 cannot be
solved analytically. But it can be solved numerically using any nonlinear solver. Here,
we use an efficient quasi-Newton method called L-BFGS-B (Byrd et al., 1995), available
in the R function optim().

3.3.2 Optimal Input Selection

A consolidated approach to input selection in linear regression problems is to use
Branch and Bound algorithms, such as Leaps and Bounds (Furnival & Wilson, 1974)
or its more recent variants (Duarte Silva, 2001, 2002). These algorithms are conceived
to balance goodness-of-fit with model simplicity. In this work however, we also need to
account for mass balance besides goodness-of-fit. Therefore, the input selection routine
must explicitly account for the penalized least squares objective (Equation 3.14). If the
number of inputs is small, we can exhaustively search all possible subsets and choose
the one that yields the minimum penalized least square value (PLSV). However, this
method quickly becomes infeasible with increasing input size: there are 2n subsets of n
inputs (for station P.1, n = 19, 28, and 30). A computationally tractable optimization is
necessary (Galelli et al., 2014).

We formulate input selection as a binary optimization problem. Each input has an
index, and a binary vector p encodes input selection: pi = 1 means the ith input is se-
lected. For any given p, i.e, for any given input subset, we can solve the mass-balance-
adjusted regression problem to obtain a PLSV. Our goal then is to find p that has the
best PLSV over all p’s.

Note that p has three components: p = [d w q]′. Component d represents the dry
season:

di =

{
1 if proxy i is used for the dry season
0 otherwise

i = 1, ..., nd. (3.16)

So, where di = 1, we take the ith inputs and place into the matrix Ud. Similarly, we
create Uw from w and Uq from q. Once we have Ud, Uw, and Uq, the mass-balance-
adjusted regression procedure can be applied. To improve the robustness of the input
selection, the regression is cross-validated 50 times (Section 3.3.3), each yielding one
PLSV estimate. The average of all runs, denoted f (p), is used as the final PLSV for p.

The remaining task is to solve

min
p

f (p). (3.17)
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We solve Equation 3.17 with Genetic Algorithm (Holland, 1975), a metaheuristic op-
timization technique that allows us to treat the underlying regression as a black-box
while searching for the best subset of inputs (Kohavi & John, 1997), and is well suited
for binary optimization (Whitley, 1994). We use the R package GA (Scrucca, 2013). De-
tails about the implementations are provided in Appendix B.5.

3.3.3 Model Assessment

We set up a reconstruction experiment involving two models: Model 0 runs without
the mass balance adjustment (λ = 0 in Equation 3.14) and Model 1 has the adjustment
(λ = 1). Other than the different values for λ, both models are trained exactly the same
way, following Sections 3.3.1 and 3.3.2.

During optimization, multiple reconstructions are created while the optimal p is sought
for each model. These reconstructions are assessed with the PLSV. The final reconstruc-
tions, created with the optimal inputs, are further assessed post hoc with the commonly
used metrics: coefficient of determination (R2), reduction of error (RE), and coefficient
of efficiency (CE) (Nash & Sutcliffe, 1970; Fritts, 1976). All metrics are calculated over
50 cross-validation runs.

Following Nguyen et al. (2020b), we adopt a leave-25%-out cross-validation scheme,
where each hold-out chunk is contiguous. The contiguous chunks aim to test whether
the reconstruction can capture regime shifts in the time series, in line with the tra-
ditional split-sample scheme. The 50 repetitions provide a distribution for each skill
metric, allowing more robust estimation of the mean skill score. More importantly,
the distributions enable us to assess the statistical significance of skills. For example,
a reconstruction is considered statistically skillful with respect to CE at α = 0.1 if the
probability of negative CE is less than 0.1.

3.4 Results

3.4.1 Reconstructions

For Model 0’s dry season and annual reconstructions, all metrics are at least 0.40, and
the reconstructions match their targets closely (Figure 3.4). Furthermore, these recon-
structions are statistically skillful at α = 0.1. Conversely, Model 0’s wet season recon-
struction is not statistically skillful. Although the mean RE and CE are positive (RE =
0.35, CE = 0.23), these scores vary widely over the cross-validation runs (Figure 3.5),
suggesting that the wet season reconstruction is sensitive to training data. The large
variability of skills is also consistent with the high variability of streamflow (Figure
B.3). These observations suggest that there may be nonlinearity in the streamflow–
proxy relationships at the extremes. In future studies, nonlinear reconstruction models
(e.g., Nguyen & Galelli, 2018) could be incorporated to address this problem.

Model 1, with the penalty term, makes visible adjustments to the seasonal reconstruc-
tions but minimal changes to the annual one for the instrumental period (Figure 3.4).
Dry season skills slightly decrease, wet season’s RE and CE increase, and annual skills
remain almost the same. While the mean skill scores of both models are similar, Model
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Figure 3.4. Reconstruction skills and time series for the instrumental period, produced
using two models: without mass balance penalty (λ = 0) and with penalty (λ = 1)
in the regression problem (Equation 3.14). Grey lines show naturalized observations.
Underlined scores show where the reconstruction is not statistically skillful at α = 0.1.

1 produces notably narrower distributions of RE and CE for the wet season (Figure
3.5). Consequently, Model 1’s wet season reconstruction becomes statistically skillful.
Overall, Model 1 is more robust.

To understand Model 1’s robustness, let us recall the models’ formulation. Model 0
reconstructs the dry season, wet season, and annual flows independently. Each recon-
struction is geared towards its own target, and can become sensitive to training data—
the wet season reconstruction does. Contrarily, Model 1 links all three reconstructions
together via the penalty term (Equations 3.12–3.14). This link provides each recon-
struction with additional information from the other two, thus preventing each recon-
struction from overfitting to its own target. In our case, the wet season reconstruction
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Figure 3.5. Distribution of skill scores.

benefited significantly from this additional information to become statistically skillful,
with minimal trade-off from the other two reconstructions.

The selected input subsets by both models provide further insights into their similari-
ties and differences. Both models use similar input subsets, with identical ones for the
water year. However, Model 1 uses fewer inputs than does Model 0 for the wet and
dry seasons (Figure 3.6). Therefore, the models behave similarly, but Model 1 is more
parsimonious.

Surprisingly, the Mu Cang Chai and Mae Hong Son δ18O chronologies were consis-
tently selected by both models for all reconstructions, including the dry season recon-
structions where we expected ring width chronologies to dominate, based on the ob-
served tendencies of ring width to correlate more with wet season flow and δ18O to
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Figure 3.6. Selected inputs for each streamflow target (columns) in each model (pan-
els). Only inputs that were selected at least once are shown. The stable oxygen isotope
(OX) inputs are marked in dark red. Bold numbers at the bottom row of the x-axis
are the number of selected inputs in each column. Both models selected similar input
subsets. The number of inputs selected for each target by Model 1 is the same as or

fewer than those selected by Model 0 for the same target.

correlate more with dry season flow. Upon closer examinations of the correlation anal-
ysis (Figure 3.3), the puzzle is solved. First, the δ18O chronologies are intercorrelated
C. Xu et al., 2019, and the input selection algorithm correctly selected the two sites
that exhibit the strongest correlations. Second, while these δ18O chronologies correlate
less with dry season flow than they do with wet season flow, the correlations are still
stronger than those observed at many ring width sites.

Over the whole study horizon, we observe similar results to those of the instrumental
period (Figure 3.7). The two models agree with each other. Model 1’s adjustments are
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generally small. The largest adjustments are in the wet season (±400 Mm3); smaller but
notable adjustments are seen in the dry season (±200 Mm3), and minute adjustments
(< 90 Mm3) are seen in the annual reconstruction. We will examine the effects of these
adjustments in Section 3.4.2.
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Figure 3.7. (a) Full reconstruction time series of both Model 0 (λ = 0) and Model 1
(λ = 1). (b) Distributions of the amounts of adjustment made by Model 1, that is, the

estimates of Model 1 subtracted by those of Model 0.

The reconstructions provide some interesting insights into the inter- and intra-annual
variability of the river (Figure 3.8). Between 1825–1855, sustained low flow was ob-
served in the wet season and water year reconstructions. However, in the dry season,
the low flow period ended 15 years earlier, around 1840. Conversely, a period of sus-
tained high flow was observed in all three reconstructions between 1790–1820, espe-
cially for the dry season. Most notably, dry season flow in 1815 was so high that it
accounted for more than 50% of the annual flow—a rare event that occurred in only
8 of 254 years (Appendix B.6). Revealing events like this one is is of fundamental im-
portance for the operations of Bhumibol Dam, which supports the activities of large
irrigation districts.
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Figure 3.8. Full reconstruction results

3.4.2 Annual Mass Balance

For each model, we compare the total seasonal flow with the annual flow. To preserve
the annual mass balance, these two time series should ideally be the same. However,
for Model 0, large discrepancies are seen between the two time series (Figure 3.9a). For
Model 1, the two time series agree with each other better. As each time series provides
an estimate of the annual water budget, we are also interested in their distributions.
We observe that the distributions produced by Model 0 are notably different from each
other, but those produced by Model 1 are almost identical (Figure 3.9b). This implies
that the distributions derived from Model 1 are more reliable. Using the same analysis,
we show that Model 1 also produces more reliable distributions of the dry and wet
season’s water budget than does Model 0 (Figure B.12).

Next, for each model, we calculate the mass difference, ∆Q, between the total seasonal
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Figure 3.9. (a) Comparison between the total seasonal flow (TSF; Wet + Dry) and
the annual flow (AF; Water year) for Model 0 (λ = 0) and Model 1 (λ = 1). (b)
Distributions of the annual water budget, estimated by either the TSF or the AF for
both models. (c) The differences, ∆Q, between the TSF and the AF. (d) Distributions
of ∆Q. The shaded region denotes the ±190 Mm3 range, equivalent to ±10% of the

mean annual flow.

flow and the annual flow, then examine its trajectory and distribution (Figures 3.9c and
3.9d). The mass difference for Model 0 ranges from −640 Mm3 to 600 Mm3, while
that range for Model 1 is −270 Mm3 to 370 Mm3; a 50% reduction in range. Moreover,
Model 0 yields a mass difference outside the interval±190 Mm3 (±10% of the mean an-
nual flow; shaded region in Figure 3.9d) in 28% of the years. That figure for Model 1 is
only 11%. By these metrics, Model 1 is twice better than Model 0 in terms of preserving
mass balance.
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3.5 Discussion and Conclusions

In Section 3.4.1, we showed that the optimal input selection procedure yields good re-
construction skills for both model setups, and that Model 1, by imposing a mass balance
adjustment, produces more robust reconstructions than does Model 0. More impor-
tantly, the adjustment significantly reduces the differences between the total seasonal
flow and the annual flow (Section 3.4.2). Without the adjustment, the mass difference
can be as large as 640 Mm3, or about 30% of the mean annual flow. It amounts to 90%
of the irrigation demand from the Ping River downstream of Bhumibol Reservoir (Di-
vakar et al., 2011). Such a discrepancy may lead to water allocation disputes. With the
adjustment, both the frequency and magnitude of discrepancies are reduced—this is
crucial for water availability assessment, a major goal of dendrohydrology.

We also showed that the mass-balanced-adjusted regression produces reliable distribu-
tions of the seasonal and annual streamflow. These distributions can be used for prob-
abilistic studies in water resources applications. For example, sub-annual stochastic
time series can be generated from the distributions to be used in bottom-up vulnerabil-
ity assessments of water systems (Pielke et al., 2012; Herman et al., 2016). In Appendix
B.8 we illustrate one simple way to do so (by sampling from a bivariate distribution
fitted to the seasonal reconstructions), but more advanced methods are available (e.g.,
Borgomeo et al., 2015a; Borgomeo et al., 2015b).

The framework that we proposed here can be reapplied and expanded in several ways.
First, analysts adopting our framework have the choice to tune λ, depending on how
important it is to preserve mass balance in their applications. In this case, a sensitivity
analysis with respect to λ may be informative. Second, the mass balance formulation is
applicable to other climate variables such as precipitation, and to other contexts where
a penalty term in the regression equation is desirable. For example, if one wishes to
reconstruct streamflow at two tributaries as well as the main stream of a river, the mass
balance adjustment should be used to minimize the difference between the total flow
of the tributaries and the flow on the main stream. More proxies, such as maximum
wood density and blue intensity, can also be incorporate to increase the amount of
climate signal captured. Finally, the mass balance formulation is readily extendable to
higher resolutions, e.g., quarterly or monthly, as long as the proxy network is sensitive
enough to the higher resolution targets. (We will explore this in Chapter 5, Section
5.3.1.) These directions can help dendrohydrology realize its value in operational water
management, an area where annual, unconstrained streamflow reconstructions have
had limited success.
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Chapter 4

Coherent Streamflow Variability in
Monsoon Asia over the Past Eight
Centuries—Links to Oceanic Drivers

Publication

Nguyen, H. T. T., Turner, S. W. D., Buckley, B. M., & Galelli, S. (2020b). Coherent
stream flow variability in Monsoon Asia over the past eight centuries — links to oceanic
drivers. Water Resources Research, e2020WR027. https://doi.org/10.1029/2020WR027883

4.1 Introduction

Of the world’s 30 biggest rivers, ten are located within Monsoon Asia, and two others
originate from this region (Figure 4.1). These river basins are home to 1.7 billion people
(Best, 2019). With high population densities, even smaller basins support the liveli-
hood of millions—e.g., Chao Phraya (Thailand): 25 million, Angat (the Philippines): 13
million, and Citarum (Indonesia): 10 million (Nguyen & Galelli, 2018; Libisch-Lehner
et al., 2019; D’Arrigo et al., 2011a). River discharge, or streamflow, provides water for
domestic and industrial uses, irrigation, and hydropower. It sustains aquatic life (in-
cluding fish yield), carries sediment and nutrients, helps prevent salinization of river
deltas, and facilitates navigation. Streamflow is an important link in both the water-
energy-food nexus and the ecological cycle. To manage this resource, we need a good
understanding of hydrologic variability. Such understanding is often derived from
streamflow measurements; however, these instrumental data span typically only a few
decades, too short to capture long-term variability and changes in streamflow.

When compared against instrumental data, longer streamflow records reconstructed
from climate proxies—such as tree rings—often reveal striking insights. A reconstructed
pre-dam variability of the Yellow River (Li et al., 2019) shows that streamflow in 1968–
2010 was only half of what should have been; in other words, human withdrawals
for agriculture, industry, and municipalities reduced streamflow by half! A recon-
struction of the Citarum River (Indonesia) (D’Arrigo et al., 2011a) shows that the pe-
riod 1963–2006 contained an increasing trend of low flow years but no trend in high
flow years, compared with the previous three centuries. This finding suggests that

https://doi.org/10.1029/2020WR027883
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10 million inhabitants of Jakarta may be facing higher drought risks than what is per-
ceived from the instrumental record. The Mongolian “Breadbasket”, an agricultural
region in north-central Mongolia (Pederson et al., 2013), experienced an unusually wet
twentieth-century, and the recent dry epoch is not rare in the last four centuries (Davi
et al., 2006; Pederson et al., 2013; Davi et al., 2013). Consequently, agricultural plan-
ning cannot take the twentieth century to be the norm, lest history repeats the lesson of
the Colorado River Basin: observations over abnormally wet years (Stockton & Jacoby,
1976; Woodhouse et al., 2006; Robeson et al., 2020) led to water rights over-allocation,
and the Colorado no longer reaches the Pacific Ocean.

The case of the Colorado River demonstrates that streamflow reconstructions can im-
prove our understanding of water resources availability. Furthermore, with longer
streamflow records, low frequency variations of streamflow can be revealed, the fre-
quency and magnitude of floods and droughts can be better quantified, and the risks
associated with these natural disasters can be better assessed. These benefits have
been demonstrated in Australia (Allen et al., 2017; Tozer et al., 2018), the United States
(DeRose et al., 2015; Stagge et al., 2018), Canada (Hart et al., 2010; Sauchyn et al., 2015)
and other countries (Lara et al., 2015; Güner et al., 2017). Streamflow reconstructions
have also been used to generate stochastic time series for water management applica-
tions (Prairie et al., 2008; Sauchyn & Ilich, 2017). These benefits, if realized in Monsoon
Asia, can improve the lives of many people, given the dense populations that inhabit
river basins in this region.

Compelling evidence calls for more streamflow reconstructions in Monsoon Asia.
Tremendous efforts, particularly in the last four years (Figure C.1), have partly ad-
dressed this need, but the hydrological knowledge gained was limited to individual
catchments, more than half of which are in China (Table C.1). A regional, synthe-
sized understanding is lacking. Here, we produce the first large-scale streamflow re-
construction for Monsoon Asia, covering 62 stations in 16 countries, unraveling eight
centuries of annual streamflow variability. To achieve this task, we develop a novel
automated framework with three main components: (1) a climate-informed proxy se-
lection procedure, (2) a dynamic state-space reconstruction model, and (3) a rigorous
cross-validation routine for parameter tuning to achieve optimal skills. We also use the
Monsoon Asia Drought Atlas version 2 as the paleoclimatic proxy instead of a tree ring
network, as the former offers computational advantages (supported with strong phys-
ical and statistical foundations) for this large-scale reconstruction. With this work, 58
stations are reconstructed for the first time while the other four (Citarum, Yeruu, Ping,
and Indus Rivers) are extended back in time compared to previous works (D’Arrigo et
al., 2011a; Pederson et al., 2013; Nguyen & Galelli, 2018; Rao et al., 2018). This data set
allows us to assess both local historical water availability and regional streamflow pat-
terns, revealing the spatial coherence of streamflow and its links to the oceans. This un-
derstanding may improve the management of river basins and other water-dependent
resources.



Chapter 4. Monsoon Asia Streamflow Reconstruction 55

4.2 Data

4.2.1 Streamflow Data

Our reconstruction target is the mean annual flow, and we used the calendar year (Jan-
uary to December) as there is not a common water year across Monsoon Asia (Knoben
et al., 2018). We obtained streamflow data from the Global Streamflow Indices and
Metadata Archive (GSIM) (Do et al., 2018; Gudmundsson et al., 2018), using stations
having at least 41 years of data, and with less than 3% missing daily values. We also
received streamflow data from our colleagues for some countries where public stream-
flow records are not available (see Appendix C.2). Small catchments may be influenced
by local conditions more than by broad climate inputs that are captured in the regional
paleoclimate proxies (Strange et al., 2019). Therefore, we used only stations where the
mean annual flow over the whole time series is at least 50 m3/s; this threshold is heuris-
tic, and somewhat arbitrary. Details of this initial selection step are provided in Ap-
pendix C.2 and in the code repository for this paper (ntthung.github.com/paleo-asia,
DOI: 10.5281/zenodo.3818116.)

Many stations in our collection have upstream reservoirs that may interfere with the
proxy-streamflow relationship. This interference is stronger for seasonal streamflow
than annual streamflow: reservoirs transfer water from the wet season to the dry sea-
son, but not all reservoirs retain water from year to year. Reservoirs that are filled and
emptied within a year do not change the annual water budget downstream. To mini-
mize reservoir interference, we reconstructed annual streamflow, and we removed sta-
tions that have upstream retention times longer than a year. We identified upstream
reservoirs by overlaying the Global Reservoirs and Dams (GRanD) data (Lehner et al.,
2011) on the river network (Lehner & Grill, 2013; Barbarossa et al., 2018). The up-
stream retention time was calculated as the total upstream reservoir capacity (million
m3) divided by the mean annual flow volume (million m3/year). For stations having
over-year reservoirs constructed towards the end of their records, we also truncated
the corresponding years, keeping only the streamflow data before dam construction.

Our collection and quality control effort resulted in an annual streamflow data set of
62 stations in 16 countries. Our records span across Monsoon Asia, covering the fol-
lowing sub-regions: Central Asia (CA), East Asia (EA), eastern China (CN), West Asia
(WA), Southeast Asia (SEA), and South Asia (SA). The stations’ locations and upstream
retention times (for those having upstream reservoirs) are shown in Figure 4.1.

4.2.2 Proxy Data

4.2.2.1 The Monsoon Asia Drought Atlas version 2

Our paleoclimate proxy is the Monsoon Asia Drought Atlas version 2 (MADA v2) (E. R.
Cook, 2015), built upon the original MADA of E. R. Cook et al. (2010a). The MADA is
a gridded data set of the Palmer Drought Severity Index (PDSI) (W. C. Palmer, 1965)
over the Asian monsoon region; each grid cell contains an annual time series of the
mean June-July-August PDSI, reconstructed from tree rings, and calibrated with the
instrumental data set of Dai et al. (2004). The MADA proves to be a reliable long-
term record of monsoon strength, having revealed the spatiotemporal extents of the

ntthung.github.com/paleo-asia
10.5281/zenodo.3818116
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Figure 4.1. a) The Monsoon Asia region (E. R. Cook et al., 2010a); river basins involved
in this study are highlighted by sub-region, rivers belonging to the world’s 30 biggest
(Best, 2019) shown with blue names. b) Upstream retention time of the 42 stations that
have upstream reservoirs. The bar colours denote the regions according to a). The first

two letters of each station’s code indicates the country it is in.
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Figure 4.2. First year of record for each MADA grid point. 2716/2732 grid points start
at or before 1200. The remaining grid points are not used.

four Asian megadroughts in the last millennium, and linking variations in monsoon
strength to sea surface temperature patterns. MADA v2 improves over its predecessor
by incorporating more tree ring chronologies (453 versus 327), and targeting the self-
calibrating PDSI (scPDSI), which addresses several limitations of the standard PDSI
(Wells et al., 2004; van der Schrier et al., 2013). We use the MADA v2 portion between
1200–2012 as this is the common period of most grid points in the atlas (Figure 4.2), and
is also the stable portion with sufficient number of tree ring chronologies in the source
tree ring network.

4.2.2.2 Computational advantages of using the MADA, and caveats

The construction of the MADA can be thought of as a transformation from the tree ring
network, irregular in both space and time, to a regular grid with homogeneous tempo-
ral coverage—analogous to transforming meteorological station data to gridded tem-
perature and precipitation products. This transformation brings several advantages to
reconstructing streamflow using the MADA, compared to using the underlying tree
ring network.

First, in a typical reconstruction study, one must detrend and standardize the tree ring
data to remove non-climate signals (cf E. R. Cook & Kairiukstis, 1990). For a large scale
study like ours, such a task is complex. Instead, we can leverage the effort that has been
devoted to detrending and standardizing the chronologies in making the MADA, and
use the MADA as proxy, having built the physical and statistical foundations to do so
(Section 1.2).



Chapter 4. Monsoon Asia Streamflow Reconstruction 58

Second, the tree ring sites often cluster, with vast empty space between clusters (see e.g.
E. R. Cook et al. (2010a), Figure 1). When taking a subset of them for reconstruction at a
station, there can be cases where none or very few sites are within a search radius. The
MADA helps “bridging” the space, bringing climate signals from further-away tree
sites to grid points nearer to the station. The high resolution grid (1◦ × 1◦ for version
2) makes automated grid point selection easier. (The automated grid point selection
procedure is described in Section 4.3.1.)

Third, when reconstructing streamflow from tree rings, nested models are often neces-
sary because tree ring chronologies have different time spans. One starts with the short-
est nest, using the common time span of all chronologies to build a model, then drop-
ping the shortest chronology to build a second model with longer time span but less ex-
plained variance than the first, and repeating the process, dropping more chronologies
to achieve longer time spans until the final nest with the longest time span, but with
the lowest explained variance. The nests’ outputs are then corrected for their variance
and averaged to obtain the final reconstruction (see e.g., D’Arrigo et al., 2011a). This
nesting step was carried out for the MADA, such that most grid points have the same
time span (Figure 4.2). This lets us use a single common period (1200-2012), and elim-
inates our need to build nested models back in time. This is particularly desirable for
our dynamic state-space reconstruction model, as averaging the nests breaks the link
between the catchment state and streamflow. (The reconstruction model is described
in Section 4.3.2.)

The computational advantages of using the MADA are thus threefold: (1) no detrend-
ing and standardization, (2) easier grid point selection, and (3) no nesting. However,
these come with some costs, the most important of which is uncertainty. When re-
constructing streamflow from the MADA, we treat the MADA (i.e., the model input)
as constant. But in fact, the MADA is a regression product and has its own uncer-
tainty. Furthermore, this uncertainty increases back in time as the number of avail-
able chronologies decreases. One way to quantify the uncertainty is by bootstrapping:
streamflow reconstructions can be built using bootstrap replicates of the MADA, and
the range of the bootstrap ensemble indicates the uncertainty of the reconstruction. An
appropriate bootstrapping scheme must be considered, given that the uncertainty is
nonstationary, and that dimensionality is a challenge: the MADA has 813 years × 2716
grid points. In this regard, the added benefit of our reconstruction framework is that
it runs for each station individually (see Section 4.3), so one need not reconstruct the
whole network in order to quantify uncertainties at specific stations of interest.

As a gridded regression product, the MADA smooths out local variability. This can
be alleviated by carefully selecting and processing the grid points to retain as much
variance as possible (Section 4.3.1), and by using sufficiently large catchments (Section
4.2.1).

Finally, we note that the computational advantages we described here are only appli-
cable to large-scale studies, where an automated framework is needed. For individual
sites, we urge researchers to consider all available proxies, rather than being attracted
by the convenience offered by the drought atlases.
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4.3 Point-by-Point, Climate-informed, Dynamic Streamflow Re-
construction

When reconstructing a climate field, such as a PDSI grid or a streamflow station net-
work, it is desirable to preserve the field covariance structure. However, building a
large-scale spatial regression model is challenging. Instead, one can reconstruct each
point in the field independently, and rely on the proxy network to capture the spa-
tial patterns. This is the premise of the Point-by-Point Regression (PPR) method (E. R.
Cook et al., 1999), which has been used to reconstruct drought atlases of Europe (E. R.
Cook et al., 2015; E. R. Cook et al., 2020), the Americas (E. R. Cook et al., 1999; Stahle
et al., 2016; Morales et al., 2020), Oceania (J. G. Palmer et al., 2015), and Asia (E. R.
Cook et al., 2010a). These drought atlases demonstrate that PPR captures well the spa-
tial patterns of climate variability (see e.g. E. R. Cook et al. (1999), Figures 8 and 9).
Like these drought atlases, our streamflow network covers a large spatial domain with
varying climates; therefore, we adopted the PPR principle, and reconstructed our sta-
tions individually. While some aspects of our reconstruction framework followed the
PPR procedure, we have innovated many steps of the workflow.

Overall, the framework involves three main stages: (1) input selection (Section 4.3.1),
(2) model calibration (Section 4.3.2), and (3) cross-validation (Section 4.3.3). In Stage 1,
we selected a subregion of the MADA that is hydroclimatically similar to the stream-
flow station of interest, and extracted from this subregion a parsimonious subset of
principal components, using weighted Principal Component Analysis (PCA). This stage
involves two tuning parameters: the hydroclimate similarity threshold, and the PCA
weight. For each combination of these parameters, we calibrated a reconstruction
model in Stage 2, thus producing an ensemble of models. Finally, in Stage 3, we cross-
validated the models to choose the best one, and used that for the final reconstruction.

4.3.1 Climate-informed Input Selection

A regional paleoclimate proxy record, such as the MADA or its underlying tree ring
network, is rich with information, but not all of such information is relevant to the
streamflow target. A proper input selection is necessary to filter noise and retain only
the most relevant signal. A common way is to use proxy sites within a search radius;
and PPR does the same. But, given that geographical proximity does not necessarily
imply hydroclimatic similarity, we selected our proxies (MADA grid points) by hydro-
climatic similarity directly. The hydroclimate at location i (a MADA grid point or a
streamflow station) is characterized by three indices: aridity ai, moisture seasonality si,
and snow fraction fi, following Knoben, Woods, and Freer, who proposed this hydro-
climate characterization and calculated the indices for a global 0.5◦× 0.5◦ grid (Knoben
et al., 2018). The hydroclimatic similarity between two locations i and j is then defined
as their Euclidean distance in the hydroclimate space. This distance is termed the KWF
distance and its mathematical definition is

dKWF(i, j) =
√
(ai − aj)2 + (si − sj)2 + ( fi − f j)2. (4.1)
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By calculating the KWF distance between each MADA grid point and each streamflow
station, we can screen out MADA grid points that are geographically close to the sta-
tion of interest but hydroclimatically different—a climate-informed grid point selection
scheme. Whereas previous PPR implementations varied the search radius, we fixed
the radius to 2,500 km—the scale of regional weather systems (Boers et al., 2019)—and
varied the KWF distance between 0.1 and 0.3 in 0.05 increments. For reference, the
maximum KWF distance between any two points in Monsoon Asia is 1.424. Each KWF
distance yielded a search region encompassing a set of MADA grid points surrounding
the streamflow station of interest. In our search regions, PDSI often correlates signifi-
cantly and positively with streamflow (Figure 4.3); indeed hydroclimatic similarity is a
physical basis for correlation.

Next, we performed weighted PCA to remove multicollinearity among the MADA grid
points. Following PPR, we weighted each grid point by its correlation with the target
streamflow, using Equation 4.2:

zi = gir
p
i . (4.2)

Here, gi is grid point i’s scPDSI time series, ri the correlation between gi and the tar-
get streamflow, p the weight exponent, and zi the weighted version of gi. We used
p = 0, 0.5, 2/3, 1, 1.5, and 2, the same as those used by E. R. Cook et al. (2010a). We
then performed PCA on zi’s, and retained only those principal components (PCs) hav-
ing eigenvalue at least 1.0 (Hidalgo et al., 2000). From the retained PCs (typically
about 20–40 per station), we selected a parsimonious subset that is most relevant to
the streamflow target using the VSURF (Variable Selection Using Random Forest) algo-
rithm (Genuer et al., 2010). So, for each combination of KWF distance and PCA weight,
we arrived at a subset of PCs for reconstruction. Each streamflow station has an ensem-
ble of 30 such subsets, the best of which was identified using cross-validation (Section
4.3.3) and used for the final reconstruction.

4.3.2 Linear Dynamical System

Having obtained the climatic inputs, the next step was to model the relationship be-
tween these inputs and the catchment output (streamflow). Here, this relationship was
not modeled with linear regression (as with original PPR, and as typical with previous
reconstruction studies), but as a linear dynamical system (LDS), following Equations
4.3 and 4.4:

xt+1 = Axt + But + wt (4.3)
yt = Cxt + Dut + vt (4.4)

where t is the time step (year), y the catchment output (streamflow), u the climatic input
(an ensemble member from the climate-informed grid point selection), w and v white
noise, and x the hidden system state, which can be interpreted as the catchment’s flow
regime, i.e, wet or dry (Nguyen & Galelli, 2018). By modeling the flow regime and its
transition, the LDS model accounts for both regime shifts (Turner & Galelli, 2016) and
catchment memory (Pelletier & Turcotte, 1997). These behaviors are not modeled in
linear regression.
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Figure 4.3. a) Examples of the climate-informed grid point selection: selected MADA
grid points (green) based on two KWF distances (columns) at four stations (rows). b)
Correlations between streamflow at the same four stations and the MADA, significant
correlations (α = 0.05) enclosed in black boundaries. The selection regions in (a) gen-
erally have significant positive correlation with streamflow. The areas with significant

negative correlations need further investigation.
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The LDS model assumes that the initial state and the noise processes are normally dis-
tributed:

wt ∼ N (0, Q) (4.5)
vt ∼ N (0, R) (4.6)
x1 ∼ N (µ1, V1). (4.7)

It follows that the catchment state and output are also normally distributed. But some
of our streamflow records are skewed. These were log-transformed to reduce skewness
(Appendix C.3).

The LDS model is trained using a variant of the Expectation-Maximization algorithm.
In the E-step, we fix the model parameters and learn the hidden state. In the M-step, we
fix the hidden state and learn the model parameters. Iterations are repeated between
the E- and M-steps until convergence. The reconstruction algorithm is implemented in
the R package ldsr (Nguyen, 2020).

4.3.3 Cross-validation

Consistent with the literature, we assessed reconstruction performance using the met-
rics Reduction of Error (RE) and Nash-Sutcliffe Coefficient of Efficiency (CE or NSE)
(Nash & Sutcliffe, 1970; Fritts, 1976). Mathematically,

RE = 1−
∑
t∈V

(Qt − Q̂t)
2

∑
t∈V

(Qt − Q̄c)
2 (4.8)

CE = 1−
∑
t∈V

(Qt − Q̂t)
2

∑
t∈V

(Qt − Q̄v)
2 (4.9)

where t is the time step, V the validation set, Q the observed streamflow, Q̂ the re-
constructed streamflow, Q̄c the calibration period mean, and Q̄v the verification period
mean.

Both RE and CE are based on squared error; they can be sensitive to outliers, especially
the CE. To address this limitation, Gupta et al. (2009) proposed another metric, which
assesses a model output based on its correlation with observation, as well as its bias
and variability (Equation 4.10):

KGE = 1−

√
(ρ− 1)2 +

(
µ̂

µ
− 1
)2

+

(
σ̂

σ
− 1
)2

. (4.10)
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Here, ρ is the correlation between model output and observation, µ̂ and µ the modeled
and observed mean of the streamflow time series, and σ̂ and σ the modeled and ob-
served standard deviation of the streamflow time series. This metric is now known as
the Kling-Gupta Efficiency (KGE). The KGE complements RE and CE, and we included
the KGE in model assessment.

Conventionally, reconstruction skills are often calculated in a split-sample (i.e., two-
fold) cross-validation scheme: the model is calibrated with the first half of the data
and validated with the second half, then calibrated with the second half and validated
with the first half (see e.g., D’Arrigo et al., 2011a). The contiguous halves aim to test a
model’s ability to capture a regime shift (Briffa et al., 1988). Unfortunately, this scheme
is not practical for many stations in our record, where it would leave us only 20–25 data
points for calibration (Figure S2). In addition, a two-fold cross-validation scheme pro-
vides only two point estimates for each skill score, and they may be notably different
(for example, D’Arrigo et al. (2011a) reported CE values of 0.21 and 0.73 for the two
folds.) As a result, the mean skill score may not be robust. A number of recent works
have instead used the leave-k-out cross-validation scheme (e.g., Gallant & Gergis, 2011;
Ho et al., 2016; Li et al., 2019). In this scheme, a random chunk of k data points is with-
held for validation while the model is calibrated with the remaining data points, then
calibration and validation are repeated over as many as 100 chunks of k. This scheme
provides a more robust estimate of the mean skill score, but it may not correctly as-
sess the model’s ability to capture a regime shift, because the withheld points are not
contiguous like in the split-sample scheme.

We sought a balanced approach. In each cross-validation run for each station, we with-
held a contiguous chunk of 25% of the data points for validation and trained the model
on the remaining 75%. This way, we maintain the goal of the split-sample scheme while
still having enough data for calibration and getting distributions of skill scores, which
yield a reasonably robust mean skill estimate for each metric. Having distributions of
skill scores has another benefit: we can now make probabilistic statements about skill.
For example, we can calculate the probability that CE < 0, and if that probability is
less than a threshold α, say 0.1, then we consider the reconstruction statistically skillful
with respect to CE at α = 0.1. While not doing formal statistical tests, we can make
analogous statements about the significance of the skills scores.

When the hold-out chunks are contiguous, there are not as many chunks as when they
are random, so we repeated the procedure 30 times instead of 100, and calculated the
mean RE, CE and KGE over these 30 runs. When calculating the mean scores, we used
the Tukey’s biweight robust mean (Mosteller & Tukey, 1977) instead of the arithmetic
mean, to limit the effect of outliers. The robust mean is commonly used by dendrochro-
nologists to derive the mean chronology from tree ring samples (E. R. Cook & Kair-
iukstis, 1990), and we have extended its use here. After cross-validating all ensemble
members (Section 4.3.1), we selected one member for each station based on the robust
mean CE and KGE (RE is similar to CE and is omitted). The ideal score for both CE
and KGE is 1; therefore, we calculated for each ensemble member the Euclidean dis-
tance between the tuple (CE, KGE) and the point (1, 1). For each station, the ensemble
member nearest to the ideal score was used for the final reconstruction.
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4.4 Results and Discussion

4.4.1 Reconstruction Skills

Reduction of Error (RE) is positive at all stations (Figure 4.4a and b); Coefficient of
Efficiency (CE) is positive at all but one: Kachora in the Indus (Pakistan), where CE ≈
−0.06 (Figures 4.4c and d). At α = 0.1, 30 stations are statistically skillful with respect to
RE, and 23 are with CE (Figure S9). Comparing the histograms of RE and CE (Figures
4.4b and d), we observe that CE is slightly lower—this is expected as CE is a more
stringent metric than RE (E. R. Cook & Kairiukstis, 1990). Much lower CE than RE
implies overfitting; we do not observe that here.

When using the Kling-Gupta Efficiency (KGE), if one wishes to benchmark a model
against the verification period mean (as is with the CE), the threshold value is 1−

√
2 ≈

−0.41, i.e, KGE > −0.41 is analogous to CE > 0 (Knoben et al., 2019). Our KGE ranges
from 0.22 to 0.68 (Figure 4.4e and f), far higher than the threshold. Furthermore, all
62 stations are statistically skillful with respect to KGE at α = 0.1 (Figure 4.5). These
results indicate that our reconstruction model performs well in terms of key character-
istics: correlation, bias, and variability.
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scores of each station following the color legends encoded with the histograms in pan-
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All three metrics have similar spatial distributions (Figure 4.4a, c, and e). As expected,
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lower skills are seen in most of Central Asia, Japan, and West Asia, which lie outside
the core monsoon area. An exception is the upper reach of the Selenge River, upstream
of Lake Baikal, where model skill is high, owing to high quality tree ring records from
Mongolia (Davi et al., 2006; Pederson et al., 2013; Davi et al., 2013; Pederson et al.,
2014). In all other regions, model skill is homogeneous. The consistent performance
of our model suggests that the MADA is a good proxy for streamflow reconstruction
in Asia, and our climate-informed dynamic reconstruction is skillful. More validation
exercises (Appendix C.4) further support the reliability of the reconstruction.
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4.4.2 Spatiotemporal Variability of Monsoon Asia’s Streamflow

Having obtained reliable skill scores, we now present eight centuries of spatiotemporal
streamflow variability in Monsoon Asia, in terms of standardized streamflow (z-score
of mean annual flow) (Figure 4.6a). This reconstructed history captures the riparian
footprint of major historical events—large volcanic eruptions and megadroughts (Fig-
ure 4.6b). We first discuss the impact of the three largest eruptions of the past eight
centuries (Sigl et al., 2015): Samalas (1257) (Lavigne et al., 2013), Kuwae (1452-53) (Gao
et al., 2006), and Tambora (1815) (Stothers, 1984).

Assuming that Kuwae erupted in 1452 (consistent with tree ring records, see e.g. Briffa
et al. (1998)), these three eruptions saw similar streamflow patterns (Figure 4.6b, pan-
els 1, 4, and 8). In the eruption year t (t = 1257, 1452, 1815), large positive streamflow
anomalies were observed in Southeast and East Asia. The magnitude of the positive
anomalies were largest with Samalas, followed by Kuwae, and then Tambora. The
global radiative forcings of the Samalas, Kuwae, and Tambora events are -32.8, -20.5,
and -17.1 W/m2, respectively (Sigl et al., 2015). Thus, we observe a correspondence be-
tween the magnitude of positive streamflow anomalies and the magnitude of radiative
forcings. This correspondence is also seen clearly from the distributions of streamflow
anomalies in the three events (Figure 4.7). These results suggest an influence of volcanic
eruptions on streamflow in Southeast and East Asia.

Unlike East and Southeast Asia, South Asia’s streamflow remained around the normal
level in years t and t+ 1 in all three eruptions, suggesting little volcanic influence. More
patterns were also observed: mixed wet and dry conditions in Central Asia, and normal
to wet conditions in eastern China and West Asia (Figure 4.7a). Thus, the influence of
volcanic eruptions on Monsoon Asia’s streamflow varies spatially, ranging from strong
positive, mixed, to little. The mechanisms underlying this spatial variability are yet to
be elucidated.

Our results are mostly consistent with Anchukaitis et al. (2010), who used Superposed
Epoch Analysis to analyze PDSI anomalies in the eruption years. The key difference
is in eastern China, where Anchukaitis et al. (2010) showed negative PDSI in year t,
while we observed normal to positive streamflow anomalies in year t, and negative
streamflow anomalies in year t + 1 (Figure 4.7b). The discrepancies may be due to the
different eruption data sets (Anchukaitis et al. (2010) demonstrated this with three sets
of events) and the analytical methods. It could also be because they analyzed PDSI
while we analyzed streamflow. That we observed negative streamflow anomalies in
year t + 1 instead of t could be due to the lagged response of streamflow in this region.

As a drought/pluvial indicator, streamflow may differ from PDSI in individual years
for some regions, as discussed above, but on longer terms, our reconstructed stream-
flow agrees well with reconstructed PDSI. For example, our record fully captures the
Angkor Droughts (1345–1374 and 1401–1425) (Buckley et al., 2010; Buckley et al., 2014)
with prolonged low flow throughout Southeast Asia, and extended as far as India (Fig-
ure 4.6b, panels 2 and 3), in agreement with speleothem records from Dandak and
Jhuma Caves (Sinha et al., 2007; Sinha et al., 2011). Heavy monsoon rain interrupted
these megadroughts; such abrupt alterations to the flow regime proved difficult for the
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Figure 4.7. Distribution of standardized streamflow index in three volcanic eruptions.
The widths of the box plots are proportional to their sample sizes.

ancient city of Angkor (Buckley et al., 2014). The city once thrived thanks to an exten-
sive network of hydraulic infrastructure (Lieberman & Buckley, 2012). After the first
Angkor Drought, the inflow/outflow functions of the barays (reservoirs) were altered
in an attempt to preserve water. Heavy rains and flooding subsequently destroyed the
reduced-capacity hydraulic infrastructure. This flood likely occurred in 1375 (Figure
4.6b, event 2). By the second Angkor Drought, the “hydraulic city” (Groslier, 1979;
Lustig & Pottier, 2007) had insufficient water storage and could not recover.

Four more megadroughts that severely affected Asian societies (E. R. Cook et al., 2010a)
are also captured in our reconstruction (Figure 4.6b, panels 5, 6, 7, and 9), along with
other major droughts and pluvials. For example, Central Asia observed a six-decade
drought between 1260–1320, and sustained pluvials during 1740–1769. Most notably,
Southeast Asia suffered a drought between 1225–1255 that was comparable in length to
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Angkor Drought I, but more severe in magnitude. Following this drought was a multi-
decadal pluvial in 1271–1307. The drought is prominent in the speleothem record of
J. K. Wang et al. (2019), and the pluvial can also be traced from there.

4.4.3 Links to Oceanic Drivers

To exemplify the spatial variation of how the oceans influence streamflow, we selected
four river basins from west to east: Godavari, Chao Phraya, Mekong, and Yangtze, and
selected one station from each basin. The selected stations are in the main stream and
their reconstructions are statistically skillful.

We calculated the correlation between reconstructed annual streamflow at each station
and the seasonal averages of global sea surface temperature (SST) for the period 1856–
2012. The season definitions are: December to February (DJF), March to May (MAM),
June to August (JJA), and September to November (SON). We also included JJA and
SON of the prior year—JJA (−1) and SON (−1). Correlation patterns vary both sea-
sonally and spatially, with differences among rivers and among oceans (Figure 4.8).

4.4.3.1 Pacific Ocean

Tropical Pacific SST correlates significantly with streamflow at all four basins, but the
correlation patterns vary. For the Godavari, moderate positive correlations are seen
from JJA (−1) to DJF, and strong negative correlations are seen from JJA to SON. For
the Yangtze, the pattern is completely opposite: strong positive correlations from JJA
(−1) to DJF, and moderate negative correlations in JJA and SON. The location of the
strongest correlations suggests links to the El Niño-Southern Oscillation (ENSO, cf.
McPhaden et al. (2006)). We find it interesting that ENSO seems to influence the Go-
davari and Yangtze in contrasting ways.

Unlike the Godavari and Yangtze, the Chao Phraya and Mekong’s streamflow corre-
lates significantly with SST over most of the Pacific Ocean, and the correlation per-
sists across all seasons. The correlation pattern is negative in the tropical Pacific, and
positive in the northern and southern Pacific. This pattern and its lack of seasonality
suggest that, beside ENSO, there are influences from a driver at longer time scales,
likely the Pacific Decadal Variability (PDV)—decadal variations of Pacific SST resulted
from complex tropical-extratropical ocean-atmosphere interactions (Henley, 2017). The
North Pacific component of PDV is known as the Pacific Decadal Oscillation (PDO)
(Mantua & Hare, 2002), its southern counterpart the South Pacific Decadal Oscillation
(Shakun & Shaman, 2009); basin-wide SST variation patterns have also been termed
Interdecadal Pacific Oscillation (Folland et al., 1999). These modes are closely related
(Henley, 2017). The PDV has been shown to influence hydroclimatic variability in Mon-
soon Asia, in conjunction with ENSO (Yu et al., 2018). Specifically for the Chao Phraya,
PDV also modulates ENSO’s influence on peak flow (C. Xu et al., 2019).

4.4.3.2 Indian Ocean

Correlation patterns are less prominent in the Indian Ocean compared to the Pacific. We
observe basin-wide correlations in DJF for the Godavari and Yangtze; correlations bear
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Seasons are marked by the year in which they end. “(-1)” denotes previous year.

the same sign as that in the Pacific. This is consistent with the Indo-Pacific coupling: an
ENSO event in the Pacific leads to SST anomalies of the same sign in the Indian Ocean
(Saji et al., 1999). The Godavari and Yangtze also exhibit another correlation pattern
in SON (with small areas of significance): correlations bear opposite signs between the
tropical western Indian Ocean near the Horn of Africa and the southeastern Indian
Ocean around Sumartra. This pattern and its timing suggest links to the Indian Ocean
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Dipole (IOD) (Saji et al., 1999; Ummenhofer et al., 2017). The IOD accounts for about
12% of Indian Ocean SST variability, much less than the basin-wide coupling mode
(30%) (Saji et al., 1999); this explains the weaker correlations of the IOD. Positive IOD
events have also been linked to droughts in Southeast Asia, but this relationship is not
robust (Ummenhofer et al., 2013). In our analysis, the link between IOD and Southeast
Asian streamflow is not visible. Our interpretation is that ENSO and PDV are the main
drivers here, and they dominate any links that the IOD might have.

4.4.3.3 Atlantic Ocean

The Chao Phraya and Mekong streamflow correlates positively with tropical and north-
ern Atlantic SST. Significant and consistent correlations are observed throughout the
seasons for the Mekong, but less consistent for the Chao Phraya. The link between
tropical Atlantic SST and Southeast Asian hydroclimate was also found in a Laotian
cave speleothem record (J. K. Wang et al., 2019). To explain this relationship, these
authors examined SST, atmospheric pressure, and zonal moisture transport from cli-
mate model simulations, and proposed the following mechanism: increased tropical
Atlantic SST leads to changes in zonal moisture transport, causing depression over
tropical Indian Ocean, reducing rainout over the basin, leaving more moisture avail-
able to be transported to mainland Southeast Asia, ultimately strengthening Indian
Monsoon rain over the region.

We repeated the correlation analysis above for other stations in the Godavari, Mekong,
and Yangtze, where additional stations with statistically skillful results are available
on the main stream. Results for those stations are consistent with what we report here
(Appendix C.5).

4.4.3.4 Temporal variability of teleconnections

The correlation analysis of Figure 4.8 shows the spatial variation of the streamflow–
SST teleconnection in Monsoon Asia. This analysis was done for the common period of
SST and streamflow data (1856–2012). To explore whether and how the teleconnection
patterns changed through time, we repeated the correlation analysis using a sliding 50-
year window with 10-year increments. We show in Figure 4.9 three non-overlapping
windows, and present all windows in Movie S1. Results show that all correlation pat-
terns changed through time, echoing previous works that found non-stationarities in
oceanic teleconnection (e.g., Krishna Kumar et al. (1999) and Singhrattna et al. (2005)).
Correlations were much weaker in the period 1911–1960 compared to the preceding
and subsequent five decades (Figure 4.9). Some patterns are more transient than others.
The Yangtze’s JJA-SON pattern of negative correlations with tropical Pacific was only
strong in 1921–1980 (Movie S1). On the other hand, the Chao Phraya’s SON positive
correlations with tropical Pacific persisted throughout all periods. In 1901–1950, when
ENSO teleconnection was the weakest for all rivers, tropical and northern Atlantic SST
became the strongest teleconnection for the Chao Phraya and Mekong (Movie S1).
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Figure 4.9. Temporal variability of the streamflow–sea surface temperature correla-
tions. The analysis here is the same as that carried out in Figure 4.8, but split into three

50-year periods.
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4.5 Conclusions

In this work, we produce the first large-scale and long-term record of streamflow vari-
ability for Monsoon Asia, covering 62 stations in 16 countries. In making this record,
we also develop a novel automated, climate-informed, and dynamic streamflow re-
construction framework that leverages the computational advantages offered by our
climate proxy—the Monsoon Asia Drought Atlas (MADA) version 2. Our framework
achieves good skills for most of Monsoon Asia, and skill distribution is spatially homo-
geneous. Our results provide a regional, synthesized understanding of Monsoon Asia’s
streamflow variability over the past eight centuries, and reveal how the teleconnection
between streamflow and its oceanic drivers varied over space and time.

From our reconstruction, streamflow in Monsoon Asia appears coherent: high and
low flows often occur simultaneously at nearby stations and adjacent basins. This co-
herence is attributed to common oceanic drivers—the El Niño–Southern Oscillation
(ENSO), the Pacific Decadal Variability (PDV), and sea surface temperature variations
in the Indian and Atlantic Oceans. Coherence emerges even though we reconstructed
each station individually, demonstrating the merits of Point-by-Point Regression. More
importantly, this coherence implies that large-scale infrastructure transferring water,
or other water-reliant commodities, across river basins could accidentally expose ri-
parian people to unforeseen risks. For example, Thailand is increasingly purchasing
Mekong-generated hydropower from Laos, and when that is insufficient, complements
its energy needs with thermal power from plants that use water from the Chao Phraya
for cooling. Thailand’s energy system is more vulnerable when a prolonged drought
occurs at both rivers (Chowdhury et al., 2020a)—our record shows such events have
happened several times in the past.

We showed that the Pacific, Indian, and Atlantic Oceans influence streamflow vari-
ability, and that the strength and spatial footprint of these teleconnections varied over
time. This result suggests that our understanding of how water-dependent infrastruc-
ture could perform may be narrow, especially in South and Southeast Asia, where we
observe alternating periods of strong and weak teleconnections. A narrow character-
ization of climate-induced risks is likely to misguide climate change assessments, an
important source of information for many major infrastructural decisions. Stakes are
particularly high in Monsoon Asia, where river basins will experience further pres-
sure in the coming decades (Satoh et al., 2017; Y. Wang et al., 2019). If we can develop
methodologies for viewing future changes in streamflow in the context of past and
present climate, we then have a pathway for making more informed and robust deci-
sions. The reconstructions developed in our study offer a first step in this direction.
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Chapter 5

A Probabilistic Assessment of the
Chao Phraya Water System Using
Reconstructed Monthly Inflows

5.1 Introduction

Rivers in their normal states support societies, but rivers in their extreme states—flood
and drought—disrupt and may even destroy societies, e.g., the demise of Angkor due
to alternating extreme droughts and floods (Buckley et al., 2010; Buckley et al., 2014).
To cope with variations in streamflow, societies have built water management systems
such as reservoirs, dams, and diversions. These systems are designed based on mea-
sured streamflow, which can capture only a limited range of streamflow variability (re-
call Figure 4.6). How will the system behave, and how will its performance be affected,
when it experiences streamflow outside of what has been observed?

To answer this question, one can simulate the water system with reconstructed stream-
flow, which, thanks to the extended time span, may contain richer variability than do
instrumental data alone. However, a typical annually resolved reconstruction does
not provide the level of details needed to understand the system’s behaviour. Fur-
thermore, a historical streamflow time series, be it observed or reconstructed, is only
one realization of the streamflow process, and provides only one snapshot of system
performance. Therefore, water resources managers have used stochastic streamflow
ensembles—suits of randomized time series that resembles the statistical properties of
the observed time series—to study water systems probabilistically (Marco et al., 1993).
Naturally, stochastic streamflow can also be generated for the reconstructed time series,
creating paleoclimate-informed ensembles. One can generate stochastic ensembles of
the annual streamflow reconstruction (Henley et al., 2011; Nguyen & Galelli, 2018) or
stochastically disaggregate the annual reconstruction to higher frequencies (Prairie et
al., 2008; Sauchyn & Ilich, 2017).

In this work, we test the idea of assessing a water system probabilistically with stochas-
tic streamflow time series generated from monthly streamflow reconstruction. Our case
study is the Chao Phraya water system (Thailand). We rely on the same proxies as used
in Chapter 3, the Southeast Asian Dendrochronology Network, and reconstruct stream-
flow at the P.1 and N.1 stations on the Ping and Nan Rivers, both of which are major
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tributaries of the Chao Phraya. The reconstructions are then used to generate stochastic
streamflow ensembles using the Vector Autoregressive Moving Average model (Tsay,
2013). The ensembles are then used to simulate the water system. Finally, we assess the
system performance with respect to three operating objectives: hydropower produc-
tion, water supply, and flood control. This experimental study demonstrates the fea-
sibility of doing probabilistic assessments of water system using monthly streamflow
reconstruction. This experiment also reveals key challenges that limit the meaning-
ful transfer from simulation results to actual operational improvements. We propose
several research directions to overcome them.

5.2 The Chao Phraya Water System

The Chao Phraya River Basin has been introduced in Chapters 2 and 3. Here we focus
on the Bhumibol and Sirikit Reservoirs, located on the Ping and Nan Rivers, respec-
tively (Figure 5.1). These reservoirs are the two largest in Thailand; their characteristics
are shown in Table 5.1. Both reservoirs are multi-purpose, serving irrigation, flood
control, and hydropower production simultaneously.

Figure 5.1. Map of the Chao Phraya River Basin, showing the two main tributaries
(Ping and Nan), the streamflow stations P.1 and N.1, and the Bhumibol and Sirikit
Reservoirs. The inset shows the location of the Chao Phraya River Basin in Thailand.
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Table 5.1. Characteristics of the Bhumibol and Sirikit Reservoirs.

Attribute Bhumibol Sirikit

Opening year 1964 1974
Storage capacity (million m3) 13,462 9,510
Active capacity (million m3) 9,762 6,670
Dam height (m) 154 113.6
Installed capacity (MW) 779.2 500

Data on historical inflow, storage, and release are available at https://www.thaiwater.
net/DATA/REPORT/php/rid_bigcm.php, but only from 2002. The short inflow time
series are insufficient to use as reconstruction targets. Therefore, we reconstruct stream-
flow at the upstream stations P.1 and N.1 instead, and use a transfer function (Section
5.3.2) to convert upstream flows at P.1 and N.1 to inflow. Station P.1 has been used ex-
tensively in this thesis (Chapters 2, 3, and 4). Station N.1 were also included in the suit
of reconstructions in Chapter 4. The streamflow measurements for both stations were
obtained from the Thai Royal Irrigation Department (RID) at http://hydro-1.rid.go.th.

5.3 Methods

5.3.1 Monthly Reconstruction Model

Suppose we have S seasons, indexed as s = 1, ..., S. For example, in a monthly recon-
struction, S = 12, and in a quarterly reconstruction, S = 4. In addition, we still have
the annual reconstruction, indexed as q. The regression equations are then

ys = Xsβs + εs ∀s = 1, ..., S
yq = Xqβq + εq.

Similarly to Section 3.3.1, let

y =


y1
...

yS
yq

 , X =


X1

. . .
XS

Xq

 , β =


β1
...

βS
βq

 , ε =


ε
...

εS
εq


and we can obtain back the canonical form of linear regression.

Finally, we need to expand the expression for δ:

δt = log

(
S

∑
s=1

exp(xs,tβs)

)
− xq,tβq ∀t = 1, ..., T

It is probable that some seasons do not need a log transformation while others do. In
this case, we can define a transformation ts(.) for season s, and let t−1

s (.) be the inverse
transformation. If there are no transformation for season s then both ts and t−1

s are the

https://www.thaiwater.net/DATA/REPORT/php/rid_bigcm.php
https://www.thaiwater.net/DATA/REPORT/php/rid_bigcm.php
http://hydro-1.rid.go.th


Chapter 5. Probabilistic Assessment with Monthly Reconstructed Inflows 77

identity transformation. We also define tq and t−1
q for the water year. The expression

for δ is then

δt = tq

(
S

∑
s=1

t−1
s (xs,tβs)

)
− xq,tβq ∀t = 1, ..., T

The time series of the untransformed seasons can be orders of magnitude larger than
those of the log-transformed seasons. In this case, all time series need to be standard-
ized before the regression model can be trained. Standardization should also be applied
even without log-transformation, when the wet seasons’ flows are much larger than the
dry seasons’ flow.

In this study, we observed that with a monthly time step, the computational cost of
solving the mass-balance-adjusted regression numerically is prohibitively high. There-
fore, we opted to not log-transform any monthly time series so that the analytical solu-
tion can be used.

5.3.2 Reconstructing Reservoirs’ Monthly Inflow

First, we reconstructed monthly streamflow at P.1 and N.1, using the model presented
in Section 5.3.1. We then use the following transfer function to derive inflow to each
reservoir from upstream flow (P.1 for Bhumibol and N.1 for Sirikit):

Qk
n,m = ak

mUk
n,m + bk

m (5.1)

where Q is the inflow and U is the upstream flow; a and b are the regression coefficients;
k indicates the reservoir (Bhumibol or Sirikit); n denotes the year, and m denotes the
month. Equation 5.1 is calibrated using observed monthly upstream flow and inflow
from January 2002 to October 2020.

We anticipate that reconstructed streamflow will have smaller variance than the ob-
served streamflow, as seen with the seasonal reconstruction in Chapter 3. This “vari-
ance compression” problem is common in dendrohydrology, as trees do not capture
saturation excess flow caused by “flashy” rainfall (Coulthard et al., 2016). Therefore,
we produce a second set of reconstructions, where the reconstructed time series of each
station is bias-corrected for the instrumental period using quantile mapping (Robeson
et al., 2020; Gudmundsson et al., 2012). This is the same procedure that we used to
naturalize streamflow at P.1 as presented in Chapter 3. While bias correction increases
the variance of the reconstruction, it does not respect the annual mass balance. This is
an important trade-off that requires further research.

5.3.3 Stochastic Inflow Regeneration

We generated stochastic streamflow time series for P.1 and N.1 using the Vector Au-
toregressive Moving Average (VARMA) model (Tsay, 2013, Chapter 3). The VARMA
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stochastic process {yt}, t = 1, ..., T, is governed by Equation 5.2:

yt =
p

∑
i=1

φpyt−i +
q

∑
j=1

θjεt−j + εt (5.2)

Here, yt is a length-2 vector consisting of monthly streamflow at P.1 and N.1 at time t.
The months are indexed as t from 1 to the total number of months in the time series; this
is different from the index m = 1, .., 12 used in Equation 5.1. This is because VARMA
does not model seasonality. As a result, we deseasonalized the time series by subtract-
ing away the monthly means and dividing away the monthly standard deviations.

The VARMA parameters were fitted with a maximum likelihood procedure imple-
mented in the R package MTS (Tsay & Wood, 2018). To determine the appropriate
orders p and q, we tested all four combinations of p = 1, 2 and q = 1, 2. We found
that p = 1 and q = 1 yielded the smallest Bayesian Information Criterion (BIC) score
(Schwarz, 1978).

We then generated one hundred time series of deseasonalized streamflow at P.1 and N.1
using the fitted VARMA model. Each time series was then back-transformed using the
appropriate monthly means and standard deviations, and finally converted to reservoir
inflow using the model identified in Equation 5.1.

5.3.4 Modelling the Reservoir System

Upper and a lower rule curves are stipulated for each reservoir (Figure 5.2a). In reality,
however, the reservoirs’ storage levels are often outside the rule curves (Figure 5.2b).
That is because water allocation in the Chao Phraya River Basin follows a complicated
negotiation process (Takeda et al., 2016), which does not always respect the rule curves.
It is difficult, if not impossible, to model these negotiations mathematically. As a result,
we could not model exactly the historical operations of the reservoirs. Instead, we
opt to simulate the operations of each reservoir according to a hypothetical rule curve,
taken as the average of the upper and lower curves (Figure 5.2a).

The reservoir mass balance of reservoir k at time t is governed by Equation 5.3:

Sk
t+1 = Sk

t + Qk
t − Rk(Sk

t , Qk
t )− sk(Si

t, Qk
t ) (5.3)

where S is storage, Q is inflow, R is release, and s is spill. For simplicity, we shall drop
the superscript k in the following discussion, where it is understood that each equation
is parameterized differently for each reservoir.

Both R and s are functions of S and Q. Let Lt, Mt, and Ut be the lower, hypothetical
(middle), and upper rule curves’ target storage at time t. Then,

R(St, Qt) =


0 if St + Qt − Rmin < Lt

Rmin if St + Qt − Rmin ≥ Lt and St + Qt < Mt

Rmax if St + Qt −Mt > Rmax

St + Qt −Mt otherwise

(5.4)
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Figure 5.2. a) Upper and lower rule curves (gray) and hypothetical rule curve
(black) of the Bhumibol and Sirikit Reservoirs. Bhumibol’s rule curves were
obtained from https://www.thaiwater.net/DATA/REPORT/php/rid_lgraph3.php?
dam_id=1, and Sirikit’s from https://www.thaiwater.net/DATA/REPORT/php/rid_
lgraph3.php?dam_id=2. The hypothetical rule curve is the average of the upper and
lower rule curves. b) Daily historical storage level from 2002 compared to the upper

and lower curves.

and

s(St, Qt) =

{
St + Qt − Rmax if R(St, Qt) = Rmax and St + Qt − Rmax > Ut

0 otherwise
(5.5)

For each reservoir, Rmax is determined from the turbine capacity, and Rmin is taken as
1% of Rmax, which is close to the observed minimum release.

https://www.thaiwater.net/DATA/REPORT/php/rid_lgraph3.php?dam_id=1
https://www.thaiwater.net/DATA/REPORT/php/rid_lgraph3.php?dam_id=1
https://www.thaiwater.net/DATA/REPORT/php/rid_lgraph3.php?dam_id=2
https://www.thaiwater.net/DATA/REPORT/php/rid_lgraph3.php?dam_id=2
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As we acknowledged earlier, the actual operations of the two reservoirs are compli-
cated, resulting from negotiations that cannot be modelled mathematically. The oper-
ational characteristics that we adopted here is a much simplified representation. But,
based on limited historical data available, we found that the our reservoir model is
able to match the historical release reasonably well (Figure 5.3). Therefore, simulations
using this model can be considered as a reasonable representation of the system per-
formance.
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Figure 5.3. Comparison between simulated and historical release for each reservoir.

5.3.5 Experimental Setup

We simulate the Chao Phraya water system with three stochastic inflow ensembles. The
first ensemble, called the “Modern” ensemble, is trained on the instrumental data; the
second ensemble, “Paleo”, is trained on the reconstructions; and the third ensemble,
“BC Paleo”, is trained on the bias-corrected reconstructions. Each ensemble has one
hundred pairs of inflow time series for the two reservoirs. The time series are 254
years long, from 1750 to 2003, representing the reconstruction period. Each ensemble
member produces one simulation run. Each simulation run yields the storage and
release trajectories for the reservoirs corresponding to its inflow.

We evaluate the reservoirs’ performance in each simulation with respect to the follow-
ing metrics, which correspond to the three operating objectives of hydropower produc-
tion, water supply, and flood control.

Mean annual hydropower production

Hk =
1
N

N

∑
n=1

(
12

∑
m=1

ηρgh(Sk
n,m)Rk

n,m

)
, (5.6)
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where N = 254 years is the total simulation length, η = 0.9 is the turbine efficiency,
ρ = 1000 kg m−3 is the density of water, g = 9.81 m s−2 is the free fall acceleration,
hk(Sk

n,m) is the turbine head at storage Sk
n,m, and Rk

n,m is the release.

Mean annual supply level

We assume that the release from each reservoir is used to first serve the irrigation area
immediately downstream, and any remaining amount is then used to serve the main
Chao Phraya irrigation area. Therefore, we define the portion of reservoir k’s release
that is available to the main basin, denoted rk

n,m as

rk
n,m = max{Rk

n,m − dk
m, 0} (5.7)

where dk
m is the demand in month m from the irrigation area immediately downstream

of reservoir k. The system’s mean annual supply level is define as

W =
1
N

N

∑
n=1

 1
12

12

∑
m=1

min

{
rBhumibol

n,m + rSirikit
n,m

Dm
, 1

} (5.8)

where Dm is the demand in month m from the Chao Phraya’s irrigation area. Recall
that N is the simulation length (254 years). The monthly demands are derived from
Divakar et al. (2011).

Number of spill events

As we did not reconstruct streamflow for the Wang River and Yon River tributaries,
we cannot model the inundation in the Chao Phraya delta. However, we can use the
number of spill events as a proxy for flood events. The number of spill event in each
simulation is

Ns =
N

∑
n=1

12

∑
m=1

1{sn,m>0} (5.9)

These metrics reflect the aggregated long term performance of the reservoirs. In future
works they will be used to optimize the reservoir operations, and the optimized metrics
can then be compared with the baseline results presented here.

5.4 Results

5.4.1 Monthly Reconstructions

The reconstructions capture normal and low flows well, but not peak flows (Figure 5.4).
This is also reflected in the skill scores, where August and September have the lowest
scores (Table 5.2). In general, the reconstructions can still be considered skillful, as all
RE and CE values are positive.

As the reconstructions have smaller variances than the instrumental data (Figure D.2);
this reduced variance is observed for both instrumental and paleo periods. Therefore,
we standardized each station’s reconstruction with its monthly means and standard
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Figure 5.4. Reconstructions compared against observations.

deviations to examine the “internal” variability. The resulting z-scores reveal a rich
history of streamflow variability that is quite different from that provided by the in-
strumental data (Figure 5.5). The distriubtions have different shapes: the instrumental
data are more skewed. While not capturing the extreme high flows, the reconstructions
capture more extreme low flows than do the instrumental data. This suggests that ap-
plying variance correction to the reconstructions will result in a much broader range of
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Table 5.2. Reconstruction skill scores

P.1 N.1

Target R2 RE CE R2 RE CE

Jan 0.47 0.53 0.36 0.47 0.33 0.12
Feb 0.64 0.70 0.10 0.59 0.53 0.27
Mar 0.33 0.54 0.03 0.33 0.48 0.21
Apr 0.50 0.62 0.05 0.44 0.42 0.32
May 0.46 0.43 0.40 0.43 0.33 0.23
Jun 0.33 0.34 0.29 0.41 0.50 0.43
Jul 0.42 0.30 0.29 0.44 0.39 0.20
Aug 0.23 0.22 0.12 0.28 0.25 0.20
Sep 0.22 0.19 0.16 0.26 0.28 0.19
Oct 0.44 0.50 0.40 0.50 0.45 0.39
Nov 0.37 0.46 0.33 0.53 0.53 0.39
Dec 0.35 0.34 0.29 0.47 0.51 0.26
Annual 0.42 0.44 0.35 0.41 0.36 0.32

variability than what is observed in the instrumental data (recall Section 5.3.2).

A simple variance correction procedure commonly used in dendrohydrology is to scale
the reconstruction by the ratio between the variance of the reconstruction’s instrumen-
tal period and that of the instrumental data (e.g., D’Arrigo et al., 2011a). When applied
to our reconstructions, this procedure produced too many negative flow values. There-
fore, we resorted to using quantile mapping. While quantile mapping ensures that
no negative flows are produced, it also makes the extreme low flow in the lower-left
quadrant of Figure 5.5 become less extreme. The resulting distributions of the recon-
structions match those of the instrumental data closely (Figure D.1).

5.4.2 Probabilistic Assessment

We first examine the storage behaviour of the reservoirs in the three stochastic ensem-
bles. Only in the Paleo ensemble can the reservoirs maintain the target storage through-
out the year (Figure 5.6). In the Modern and BC Paleo ensembles, both reservoirs can
maintain the target storage only in May, June, and July. In August, the Bhumibol is
often above the target, but the Sirikit is often below the target. In other months, the
reservoirs are often below their targets. We acknowledge that the hypothetical targets
that we set, which are the average of the upper and lower rule curves, are simplistic
and may not have been the most appropriate for the reservoirs. For example, it appears
that for Sirikit, the change from July’s target to August’s target is larger than the typi-
cal inflow, leading to Sirikit’s storing less water than desired (and Bhumibol’s situation
is opposite). Nevertheless, these hypothetical targets serve to highlight the different
behaviours of the reservoirs under different inflow scenarios. In future work we shall
explore more methods to model the reservoir operations more accurately.
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Figure 5.5. Marginal and joint distributions of observed and reconstructed standard-
ized streamflow index. Streamflow values of each time series are converted to z-scores

using the mean and standard deviation of that time series.

We now examine the distributions of the three performance objectives in the three
stochastic ensembles. The results are shown in Figure 5.7.

Hydropower (Figure 5.7a)

Generally, the mean annual hydropower production, H, is higher in the Paleo ensemble
than in the Modern ensemble (89/100 replicates for Bhumibol and 92/100 replicates
for Sirikit). H also has a narrower spread in the Paleo ensemble. After the inflow
reconstructions were bias-corrected with the BC Paleo ensemble, a much wider range of
values were observed. Interestingly, in the BC Paleo ensemble, the Bhumibol observed
more extremely low H, and the median H is about 60 GWh less than that in the Modern
ensemble; on the other hand, the Sirikit observed more extremely high H, and the
median H is about 27 GWh higher than that in the Modern ensemble.

These results can be explained by the storage behaviour that we observed in Figure 5.6.
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Figure 5.6. Mean monthly storage obtained from simulations with three stochastic en-
sembles: one trained on instrumental data (Modern), another on reconstructed inflow
(Paleo), and the last on bias-corrected inflow reconstruction (BC Paleo). The mean
monthly storage is calculated over 254 years for each ensemble member and for each
month. The box plots show the distributions of the mean monthly storage over all

members in each ensemble. The red dots denote the target storage.
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In the Modern and BC Paleo ensembles, storage is often less than target, which leads to
less release. Lower storage also means smaller hydraulic head. The compound effect
of lower hydraulic head and less release causes hydropower production to drop.
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Figure 5.7. Distribution of three objectives (hydropower, power supply, flood controls)
over three stochastic inflow ensembles. In panels (a) and (b), the black horizontal lines
are the medians. In panel (c), the Paleo ensemble is not shown because it does not

produce any spill events.

Water supply (Figure 5.7b)

The distributions of the mean annual service level, W, are similar to those of H. The
system achieves about 1.5 percentage points higher W in the Paleo ensemble than in
the Modern ensemble. The BC Paleo ensemble produces the largest spread, with the
median W close to that in the Modern ensemble. These results can also be explained by
the storage behaviour. Below-target storage levels, as observed in the Modern and BC
Paleo ensembles, lead to supply cutoff. Above-target storage levels, however, does not
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improve the service level beyond 100%, and therefore are not sufficient to compensate
for the low supply months.

The Chao Phraya irrigation area is also served by the Wang and the Yon Rivers, in
addition to the supply from the Bhumibol and Sirikit Reservoirs. The Wang and the
Yon are not modelled in this study, but we aim to include them in future work.

Flood control (Figure 5.7c)

The Paleo ensemble does not produce any spill events. This is expected, as this en-
semble is built directly from the reconstructions which do not capture extreme high
flows. For the Bhumibol, 22 replicates in the Modern ensemble produce one or two spill
events. Only 10 replicates in the BC Paleo ensemble do so, but one replicate produces
three events. For the Sirikit, the Modern ensemble did not produce any spill events, but
the BC Paleo ensemble has five replicates that have spill events, one of which has three
events. All spill events occur in August, September, and October when the reservoirs
receive the highest inflows.

5.5 Discussion and Conclusions

We presented monthly reconstructions for the P.1 and N.1 stations, which were then
used to inform the stochastic inflow generator for the Bhumibol and Sirikit Reservoirs.
With the skillful reconstructions, we tackled the main barrier to using streamflow re-
construction in water system operations: temporal resolution. Yet, our results point
out another challenge—variance compression—which leads to an important trade-off.
Not correcting for variance compression leads to a narrow range of inflow variability,
from which system performance can be inflated. With variance correction, the range
of variability is indeed increased, but the mass balance is worsened, which reduces the
reliability of the results. The methods of variance correction also have their own lim-
itations. Simple scaling leads to many negative flow values, while quantile mapping
shifts the reconstruction’s distribution and reduces the severity of extreme low flows.

While these challenges remain to be solved, our initial results affirm that when using
paleo-reconstructed data, one gets a different range of system performance than when
using instrumental data. These results show the promising role of streamflow recon-
struction in improving water resources operations. But more work is needed to deliver
that promise—the challenges identified here open up several research directions. Ide-
ally, variance compression should be solved directly, by incorporating more proxies
that can capture the extreme high flows. Alternatively, the linear dynamical system
(LDS) model (Chapter 2) can be used. Both approaches require more computations,
so future works need to address that. Meanwhile, a more appropriate variance cor-
rection method can be developed to capture the extreme high flow while maintaining
the extreme low flow. Distributional discrepancies of instrumental and reconstructed
data can also be homogenized using the Bayesian combination framework (Patskoski
& Sankarasubramanian, 2015). These research directions can improve the accuracy and
reliability of monthly streamflow reconstructions, such that in the future, they can be
used, not just for probabilistic assessments, but for optimizing water resources systems
under uncertainty.
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Chapter 6

Synthesis

6.1 A New State of the Art and New Insights

The problem of managing the Colorado River’s resources is a perfect motivating ex-
ample for any class in water systems analysis. Its sheer size, socioeconomic context,
and development history make it “one of the most controlled, controversial, and lit-
igated rivers in the world” (Southern Nevada Water Authority, 2012). The Colorado
River is also a classic case that motivates the study of dendrohydrology (Section 1.1).
Even before the case of the Colorado River, dendrohydrology had been motivated by
water resources management since as early as the 1930s (Section 3.1). Yet, the value
of streamflow reconstructions in water management has been largely as a qualitative
guidance, even in the discipline’s birthplace—the United States. In Monsoon Asia,
where streamflow reconstruction was developed much later and has been sparse in
number, applications are even rarer, if at all.

The potential value of streamflow reconstructions has not been realized because of im-
portant gaps in the methodology and scope of applications. We identified four such
gaps (Section 1.3): (1) most reconstructions rely on linear regression and do not cap-
ture catchment dynamics, (2) most reconstructions are annual, (3) few reconstructions
have been developed in Monsoon Asia, all of which are single-sited—a synoptic under-
standing is lacking, and (4) reconstructions have not been used to study water system
operations. This thesis contributes towards filling those gaps.

To account for catchment dynamics, I develop a novel reconstruction method based on
linear dynamical systems (LDS), learned with a variant of the Expectation-Maximization
(EM) algorithm (Chapter 2). The LDS model also serves as a stochastic generator of
annual streamflow. The methodology has been implemented in the R package ldsr.
Using the LDS model, we reconstruct streamflow for the Ping River (Thailand), unrav-
elling four centuries of regime shifts in the catchment.

To achieve sub-annual reconstruction, I develop an optimal proxy selection procedure
based on Genetic Algorithm, and a mass-balance-adjusted regression formulation to
account for the annual mass balance (Chapter 3). This novel framework was used suc-
cessfully to reconstruct seasonal streamflow for the Ping River, revealing interesting in-
sights about the intra-annual streamflow variability while preserving the annual mass
balance well (deviations were mostly within 10% of the mean annual flow). The frame-
work has been implemented in the R package mbr.
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To gain a synoptic understanding of streamflow variability across Monsoon Asia, I
develop a large scale reconstruction, covering 62 stations in 16 countries (Chapter 4).
We explore the use of a tree-ring-derived paleodrought atlas (the MADA), instead of
the underlying tree ring network, as a paleoclimate proxy. The MADA offers several
computational advantages to a large scale reconstruction across Monsoon Asia. The
MADA grid points are selected for each station using a novel, climate-informed, and
automated procedure to automate proxy selection. This procedure also involves a rig-
orous leave-k-out cross-validation scheme, and we advocate the use of this scheme
instead of the traditional split-sample (two-fold) cross-validation. Our large scale re-
construction reveals that streamflow in Monsoon Asia is spatially coherent, owing to
common oceanic drivers. The framework is being implemented in the R package pprR,
which will soon be made available to the community.

To test, for the first time, the feasibility of using streamflow reconstruction in water
system analysis (Chapter 5), I develop monthly reconstructions for the Ping and Nan
Rivers and use them to build stochastic inflow ensembles to the Bhumibol and Sirikit
Reservoirs. These ensembles are then used to simulate the performance of the Chao
Phraya water system. While the monthly reconstructions are skillful, the probabilistic
assessment of the water system proves difficult, mainly because of the variance com-
pression phenomenon. Nevertheless, this experiment demonstrates that streamflow re-
constructions, and their stochastic replicates, provide a different distribution of system
performance than do instrumental data, reinforcing the need to incorporate streamflow
reconstruction in future water system studies. When working on this chapter and re-
lated projects, I have also been putting together an R package called shy (stochastic
hydrology).

The research projects in this thesis have explored streamflow reconstructions from
many angles, all aiming towards making streamflow reconstructions more valuable:
streamflow reconstructions can now capture regime shifts, large scale variability, tele-
connections, and intra-annual variability, and be used in operational studies of water
system. The works also point out important open problems that call for further re-
search.

6.2 The Next Steps

Variance compression remains the most important challenge. Particularly for the Ping
River, this problem arises from the complex flood generation mechanism: floods often
occur due to excess rainfall that fall on antecedent wet soil, either by typhoon rain
after a heavy monsoon, or by monsoon rain after a typhoon (Lim & Boochabun, 2012;
Stein et al., 2020). This mechanism cannot be captured by tree ring width. It was this
mechanism that motivated us to explore the LDS model. Incorporating the LDS model
into the monthly reconstruction framework in a computationally efficient way is an
immediate direction.

To increase the reconstruction accuracy, more proxies could be incorporated. Stable
oxygen isotope δ18O has proved an important proxy not just for the wet season (Chap-
ter 3). With recent technological advances (Gagen et al., 2011), it is becoming more
affordable to extract δ18O from tree rings. Therefore, we expect more chronologies to
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be develop in Southeast Asia to contribute towards better streamflow reconstruction
here. Blue intensity (Buckley et al., 2018) is also a promising proxy that can play a role
in improving the reconstructions in the winter months.

Future dendrohydrological models may also build on a completely different approach:
one could reconstruct time series of precipitation and temperature—instead of
streamflow—and use them to force a process-based hydrological model, as we briefly
discussed in Section 1.2. The approach requires a large amount of data for the model
calibration, but it has two advantages. First, process-based models implicitly account
for the physical consistency of the reconstructed discharge data. Second, they can rep-
resent alterations in the water cycle due to operations of hydraulic infrastructure or
land use changes, enabling reconstructions for non-pristine catchments. This approach
could be leveraged with state-of-the-art large-scale hydrological and water resource
models enhanced with realistic water management representation.

A last important area, which is the main theme of my postdoctoral work, is the re-
lation between dendrohydrology, water management, and the concept of nonstation-
arity. Dendrohydrological models build on the assumption that the relationship be-
tween proxies and discharge observed in instrumental records holds true over the en-
tire length of the reconstruction. Such stationarity assumption has long been compro-
mised not only by hydraulic infrastructure and land use changes, but also by anthro-
pogenic climate change. In light of this expanded uncertainty, our community has
progressively dropped the concept of the static design paradigm (Brown, 2010) and de-
veloped robust and dynamic planning techniques that adapt to nonstationary trends
(Herman et al., 2020). So, shall we still use dendrohydrological data to plan and oper-
ate hydraulic infrastructure in a nonstationary environment? The answer is yes. Con-
sidering the case of anthropogenic climate change, we have at least two technical chal-
lenges in front of us. First, we shouldn’t limit ourselves to compare the envelopes of
reconstructed, observed, and projected streamflow variability. We need data analytics
that quantify and reconcile the information contained in multiple power spectra and
distributions. With such information, we could put future hydroclimatological risks
into a better perspective, or develop a new generation of stochastic streamflow gener-
ators. Second, we should use the information provided by streamflow reconstructions
to understand and, where possible, reduce the uncertainty in hydrologic projections
informed by General Circulation Models (GCMs). A clear example is offered by the
dynamics of the Asian Monsoon, which are well captured by climate proxies (Good-
kin et al., 2019) but poorly represented by the latest generation of GCMs (Aadhar &
Mishra, 2020). Streamflow reconstructions could therefore help us identify cases in
which GCMs are not fully reliable, narrowing a major source of uncertainty for water
resources management applications.
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Epilogue

In my preliminary exam, after I presented Chapter 2 and my research plan, Prof. Peter
Jackson, the committee chair, asked if I had ever seen tree rings in real life. Embarrass-
ingly, I hadn’t at the time (not in the scientifically meaningful sense; I had only seen
tree rings on furniture). That question led me to attending the 29th Dendroecological
Field Week in Croatia, where I cored my first trees (at the end of my third year!) The
experience amplified my interests in tree ring science. One thing led to another, and
now I have done less work in water management than I planned at the beginning of
my PhD, but more reconstruction work than I had ever imagined.

I have been thinking a lot about the next step. On one hand, I will continue my den-
drohydrological work, developing more methods to address the challenges that this
thesis has identified, and gaining more insights about past hydroclimatic variability.
On the other hand, I will experiment with more methods to incorporate paleoclimate
reconstructions into practical applications. Overall, my research theme is to study hy-
droclimatic variability at all spatial and temporal scales, and translate that knowledge
into water management. Improving water management has always been my goal, and
dendrohydrology has become an important tool in my toolbox.
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Supporting Materials for Chapter 2

A.1 Proof of Lemma 1

Proof.

Update A and B

From Equation 2.18:

∂L
∂A

=
T−1

∑
t=1

Q−1(xt+1 − Axt − But)x′t

Applying Leibniz’s rule (swapping derivative and expectation) to Equation 2.19:

∂Q
∂A

= E

[
∂L
∂A

]
= Q−1

(
T−1

∑
t=1

Pt+1,t − A
T−1

∑
t=1

Pt − B
T−1

∑
t=1

ut x̂t

)

Set this partial derivative to zero:

A
T−1

∑
t=1

Pt + B
T−1

∑
t=1

ut x̂′t =
T−1

∑
t=1

Pt+1,t (A.1)

Similarly,

∂L
∂B

= Q−1

(
T−1

∑
t=1

x̂t+1u′t − A
T−1

∑
t=1

x̂tu′t − B
T−1

∑
t=1

utu′t

)

=⇒ A
T−1

∑
t=1

xtu′t + B
T−1

∑
t=1

utu′t =
T−1

∑
t=1

x̂t+1u′t (A.2)

Combining Equations A.1 and A.2:
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(A.3)

Update C and D

When there are no missing observations, all the yt’s are observed and treated as con-
stants in the conditional expectation.

∂Q
∂C

= R−1

(
T

∑
t=1

yt x̂′t − C
T

∑
t=1

Pt − D
T

∑
t=1

ut x̂′t

)

=⇒ C
T

∑
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Pt + D
T

∑
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ut x̂′t =
T

∑
t=1

yt x̂′t (A.4)

∂Q
∂D
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(
T
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∑
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)
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T
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Combining Equations A.4 and A.5:

[
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]
=
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yt x̂′t
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∑
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(A.6)

Update Q
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∂L
∂Q−1 =

T − 1
2

Q− 1
2

T−1

∑
t=1

(xt+1 − Axt − But)(xt+1 − Axt − But)
′

∂Q
∂Q−1 =

T − 1
2

Q− 1
2

((
T−1

∑
t=1

Pt+1 − APt,t+1 − But x̂′t+1

)
+ F1 + F2
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(A.7)

where

F1 =
T−1

∑
t=1

(APt + But x̂t − Pt+1,t)A′

F2 =
T−1

∑
t=1

(Axtu′t + Butu′t − x̂t+1u′t)B′

Note that the values for A and B here are the updated values, i.e., those obtained in
Equation A.3, which satisfy Equations A.1 and A.2. Therefore, F1 = F2 = 0, and Equa-
tion A.7 leads to

Q =
1

T − 1

T−1

∑
t=1

(Pt+1 − APt,t+1 − But x̂′t+1) (A.8)

Update R

By doing similar algebraic manipulations, we arrive at

∂Q
∂R−1 =

T
2

R− 1
2

((
T

∑
t=1

(yt − Cx̂t − Dut)y′t

)
+ G1 + G2

)
(A.9)

where

G1 =
T

∑
t=1

(CPt + Dut x̂′t − yt x̂t)C′ (A.10)

G2 =
T

∑
t=1

(Cx̂tu′t + Dutu′t − ytu′t)D′ (A.11)

Again, the values for C and D are the updated values, i.e., those obtained in Equation
A.6, which satisfy Equations A.4 and A.5. Therefore, G1 = G2 = 0 and

R =
1
T

T

∑
t=1

(yt − Cx̂t − Dut)y′t (A.12)

Update the initial state distribution (µ1, V1)

It is easy to show that µ1 = x̂1 and V1 = V̂1.

�
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A.2 Proof of Lemma 2

Proof. Let O be the set of time steps with observations andM be the set of time steps
without observations. Then, define

YO := {yt : t ∈ O}
YM := {yt : t ∈ M}

There are two ways to specify the hidden data. The first and obvious way (approach 1)
is to let the hidden data be (X, YM) so that the complete data will be (X, YM, YO). How-
ever, the system equations implies that YM is independent of YO given X; therefore, we
can specify the hidden data to be X and the complete data to be (X, YO) (approach
2). Here we derive the update equations for approach 1 and show that it is indeed
equivalent to approach 2.

First, we note that the conditional distribution for the hidden variable is now
p(X, YM|YO, θk). Therefore, when we take expectation to obtain

Q = EX,YM|YO ,θk
[log p(X, YM, YO |θ)],

we have to note that YM are random variables while YO are constants (in the full data
case, all the y’s are constants). As a result, the following quantities will arise for t ∈ M

E[ytx′t] = E[(Cxt + Dut + vt)x′t] = CPt + Dut x̂′t (A.13)
E[yty′t] = E[(Cxt + Dut + vt)(Cxt + Dut + vt)

′]

= (Cx̂t + Dut)(Cx̂t + Dut)
′ + CV̂tC′ + R (A.14)

In both Equations A.13 and A.14, we used the fact that xt ⊥ vt. Furthermore in Equa-
tion A.14 we used

E[wtw′t] = E[wt]E[w′t] + V[wt] = R

Second, since A, B, Q, µ1 and V1 are independent of Y, we only need to consider C, D
and R.

Update C and D

Applying the above expectations, Equation A.4 becomes

T

∑
t=1

Pt + D
T

∑
t=1

ut x̂′t = ∑
t∈O

yt x̂′t + ∑
t∈M

CPt + Dut x̂′t

=⇒ C ∑
t∈O

Pt + D ∑
t∈O

ut x̂′t = ∑
t∈O

yt x̂′t (A.15)
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and Equation A.5 becomes

C
T

∑
t=1

x̂tu′t + D
T

∑
t=1

utu′t =
T

∑
t∈O

ytu′t +
T

∑
t∈M

(Cx̂t + Dut)u′t

=⇒ C ∑
t∈O

x̂tu′t + D ∑
t∈O

utu′t = ∑
t∈O

ytu′t (A.16)

As a result, the new update equation for C and D is

[
C D

]
=

[
∑
t∈O

yt x̂′t ∑
t∈O

ytu′t
] 

∑
t∈O

Pt ∑
t∈O

x̂tu′t

∑
t∈O

ut x̂′t ∑
t∈O

utu′t


−1

(A.17)

which is identical to Equation A.6 except that the sum is over the observed time steps
instead of over the whole time series length.

Update R

Similarly, substituting Equations A.13 and A.14 into the expectation of Equation A.9,
we also obtain a new update equation for R as follows

R =
1
|O| ∑

t∈O
(yt − Cx̂t − Dut)y′t (A.18)

where |O| denotes the number of elements in the set O.

Thus we have shown that YM does not affect the M-step and it is sufficient to consider
X as the hidden data. �
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B.1 Imputing Tree Ring Data
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Figure B.1. Time spans of the tree ring width chronologies (blue areas). The gray
areas are to be imputed; they accounts for about 8% of the total number of possible

data points.
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Figure B.2. Results of the imputation process. The original ring width indices (RWI)
and the imputed values match very closely in the common periods. The imputations
are applied to extend the chronologies backward and forward as necessary. Finally, we
combine the imputed values in the missing years with the original ring width indices.
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B.2 Streamflow Data Preprocessing

B.2.1 Gap Filling for Streamflow Data

Daily streamflow at P.1 is almost complete: from April 1921 to March 2017, there were
only 87 missing days (0.25% missing rate). We simply filled each missing value with
the average flow of the same date. The minimal fraction of missing data does not affect
the seasonal flow calculation.

B.2.2 Season Delineation

In Thailand, the water year is considered to be the same as the Thai calendar year,
from April to March. This definition does not match the hydrograph at P.1 very well
(Figure B.3). Therefore, we delineate the wet season and dry season empirically us-
ing the procedure of B. I. Cook and Buckley (2009). For each year, we first calculated
the daily cumulative streamflow (Figure B.4a), then we used the two-phase linear re-
gression method (Lund & Reeves, 2002) to determine the change points in the slope of
the cumulative streamflow time series. These change points are the dates of onset and
withdrawal of the wet season in each year. Based on the trajectories and distributions of
the change points (Figure B.4b and B.4d), we delineate the wet season as July–October,
and the dry season as November–June.
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Figure B.3. Distribution of monthly streamflow at P.1 from instrumental data.
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Figure B.4. Season delineation using the change point method. a) Cumulative daily
discharge for each year. The three wettest years (blue) are La Niña years, and the three
driest years (red) are El Niño years. The thick black line is the average. b) Dates of
onset (orange) and withdrawal (blues) of the wet season in each year. c) Distributions

of the onset and withdrawal dates.

B.2.3 Streamflow Naturalization

The ideal way to naturalize a streamflow time series is to build on observed data
of the upstream anthropogenic interventions. For example, the case of a river seg-
ment affected by the operations of an upstream reservoir could be tackled by using
data on inflow, operating rules, and release (Sauchyn & Ilich, 2017). Unfortunately,
this information is not available for the Mae Ngat Dam, so we proceeded by relying
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on discharge data simulated at station P.1 by VIC, a spatially-distributed, hydrologic-
hydraulic model.

VIC is a popular large-scale model that simulates the water and energy balances at the
land surface. Specifically, VIC organizes the spatial domain into a number of computa-
tional cells, where baseflow, runoff, infiltration, and evapotranspiration are estimated
as a function of various hydro-meteorological forcings (Liang et al., 1994). The simu-
lated runoff is then routed through the river network by a post-processor, or flow rout-
ing scheme (Lohmann et al., 1996; Lohmann et al., 1998). In our study, we use a model
implementation that spans across the entire Chao Phraya River basin (Dang et al.,
2020)—thereby including the Ping River and station P.1. Rainfall and temperature data
are taken from APHRODITE (Yatagai et al., 2012) and CFSR (Saha et al., 2014), respec-
tively. Land use data are obtained from the Global Land Cover Characterization data
set (https://www.usgs.gov/centers/eros/science/), while soil data are extracted from
the Harmonized World Soil Database (http://www.fao.org/soils-portal/soil-survey/
soil-maps-and-databases/harmonizedworld-soil-database-v12/en/). The monthly Leaf
Area Index and albedo are derived from the Terra MODIS satellite images, which rep-
resent changes in canopy and snow coverage over time. The Digital Elevation Model
is created by masking the Global 30 Arc-Second Elevation DEM with the shape of the
Chao Phraya River basin. What is perhaps more important here is that the VIC model
represents the storage dynamics of the two largest reservoirs within the Chao Phraya
basin (i.e., Bhumibol and Sirikit), but not Mae Ngat Dam, meaning that it simulates
the behaviour of the Ping River (upstream of station P.1) under natural, or pre-dam
development, conditions. Furthermore, the model is setup for the period 1976–2005,
conveniently spanning across the pre- and post-dam development conditions (recall
that the dam became operational in 1985). Further details about the model calibration
and validation are available in Chowdhury et al. (2020b).

The simplest option to naturalize the streamflow time series at station P.1 is to re-
place the observed discharge data (over the period 1986–2005) with those simulated
by VIC. However, such solution does not account for the unavoidable differences be-
tween observed and simulated data, ultimately affecting our streamflow reconstruc-
tion exercise. For this reason, we proceeded by first bias-correcting VIC’s output.
Specifically, we used the quantile mapping method RQUANT (Gudmundsson et al.,
2012), implemented in the R package qmap (Gudmundsson, 2016). RQUANT has been
shown to work well in bias-correcting climate models’ precipitation outputs (Gud-
mundsson et al., 2012) and streamflow reconstruction from tree rings (Robeson et al.,
2020). RQUANT first bootstraps the modeled and observed time series to obtain ro-
bust empirical quantile estimates, and then maps the quantiles of the model outputs to
those of the observed daily streamflow. In our case, we calibrated the bias-correction
algorithm on the pre-dam development scenario (1976–1985) and then applied it to
the post-dam development one (1986–2005). The results illustrated in Figure B.5 show
that the bias-corrected VIC’s output is in reasonable agreement with the observed dis-
charge.

https://www.usgs.gov/centers/eros/science/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonizedworld-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonizedworld-soil-database-v12/en/


Appendix B. Supporting Materials for Chapter 3 102

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Q [m³/s]

F
(Q

)

a) CDF of daily data

0 100 200 300
Q [m³/s]

b) CDF of monthly data

Water year

Wet season

Dry season

1980 1985 1990 1995 2000 2005

500

1000

500

1000

1500

2000

1000

2000

3000

V
ol

um
et

ric
 fl

ow
 [m

ill
io

n 
m

³]

c) Time series

Bias−corrected Observed Uncorrected

Figure B.5. Cumulative distribution function (CDF) of the daily and monthly dis-
charge data (panels (a) and (b), respectively). The uncorrected data are simulated by
the VIC hydrologic model. In panel (c), we compare the three time series (observed,
simulated, and bias-corrected data) for the dry season, wet season, and water year.

The pre-dam period (1976–1985) is highlighted by the shaded area.

B.2.4 Log Transformation to Improve Symmetry

We determined the distributional symmetry of the streamflow targets using the Hink-
ley’s D metric (Hinkley, 1977). We compared the Hinkley’s D of the log transformed
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and non-transformed flow, and found that the log transformation improves the sym-
metry of distribution for all three targets (Table B.1 and Figure B.6). Therefore, we log
transformed all three streamflow targets before using them in reconstruction.

Table B.1. Hinkley’s D values of the streamflow targets

Target No transformation Log transformation

Dry season 0.14 0.02
Wet season 0.15 -0.01
Water year 0.12 -0.01

Dry season Wet season Water year
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Figure B.6. Comparing densities of streamflow targets with and without log transfor-
mation. For easy comparison, the time series are converted to z-score before densities

are calculated. The log transformation improves the symmetry of the distribution.

B.3 Proxy–precipitation analysis

To further explore the relationship between tree ring proxies and climate, we conducted
a “climate footprint” analysis (R. Maxwell et al., 2017; Harley et al., 2017). We correlate
each proxy chronology with gridded precipitation data from CRU TS4.04 (Harris et al.,
2020). This is done for both monsoon (July–October) and pre-monsoon (March–May)
precipitation. Correlation patterns vary remarkably among the ring width sites, and
in general, ring width tend to correlate more with precipitation in the pre-monsoon
months than in the monsoon months (Figures B.7 and B.8). On the other hand, δ18O
correlate with precipitation in the monsoon months more strongly and consistently
than in the pre-monsoon months (Figure B.9). The magnitudes of correlations between
δ

18O and precipitation also tend to be larger than that between ring width and precip-
itation. These results are similar to those of the proxy–streamflow correlation analysis
in Figure 3.3 of the main text.
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Figure B.7. Correlations between ring width chronologies (black dots) and CRU
TS4.04 (Harris et al., 2020) total precipitation for July–October. The areas with sig-
nificant correlation (two-tailed t-test with α = 0.05) are enclosed in black boundaries.
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Figure B.8. Same as Figure B.7 but for March–May precipitation.
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Figure B.9. Same as Figures B.7 and B.8 but the proxy used is δ18O. a) Correlations
with monsoon precipitation (July–October). b) Correlations with pre-monsoon precip-

itation (March–May).
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B.4 Proof of Lemma 3

Proof. Observe that J2 is quadratic. Let

A =
[
Xd Xw − Xq

]
∴ δ = Aβ

∴ J2 = (y− Xβ)′(y− Xβ) + λβ′A′Aβ

Compute first order derivative with respect to β and set to zero:

∂J2

∂β
= −2X′(y− Xfi) + 2λA′Aβ

= −2X′y + 2X′Xβ + 2λA′Aβ

∂J2

∂β
= 0

=⇒ β = (X′X + λA′A)−1X′y �

B.5 Genetic Algorithm Implementation

In genetic algorithm (GA), each binary vector p is thought of as an individual that can
evolve over time. Starting with an initial population, in each generation (time step), the
individuals go through mutation, crossover, and selection. Mutation means some binary
elements are switched from 0 to 1 or vice versa. Crossover between two individuals
p1 and p2 means a segment of p1 is swapped to p2 and another segment of the same
length is swapped from p2 to p1. Selection means only individuals with good fitness are
able to live on to the next generation. Here, fitness is defined as f (p) in Equation 3.17.
As the population evolves, the fitness increases. The algorithm stops after a number
of generations, and the individual with the best fitness in the final population is the
optimal solution.

Two important tuning parameters in GA are the population size N and the number of
generations G. In each generation, the fitness value is calculated for each individual, so
N×G is the number of function evaluations (NFEs). We set N = 500 and G = 500, i.e.,
NFE = 250, 000. In our experience, this value is sufficient to achieve convergence. In
fact, for our experiment with P.1, the algorithm converged after about 100 generations
for Model 0, and about 300 generations in Model 1 (Figure B.10). For other parameters,
we used the sensible defaults set by the package GA (Scrucca, 2013).
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Figure B.10. Convergence of GA solutions. The shaded areas show the best 50th per-
centiles of all individuals, i.e., the bottom of the shaded area is the median of all indi-

viduals.

B.6 Intra-Annual Streamflow Variability

To explore the intra-annual streamflow variability that is captured in the construction,
we calculated the ratio (D/Q) of dry season flow (D) to annual flow (Q) for each year,
and plotted it against the total annual flow volume. We did this for both the naturalized
instrumental time series and the reconstructions (Figure B.11). The years 1971, 1973,
and 1975 were affected by consecutive La Niña events (see https://www.coaps.fsu.
edu/jma). As a result, extremely high flow occurred in the wet season, leading to
small D/Q values. As we discussed in Section 3.4.1 of the main text, these extreme
high flows could not be captured by tree rings. Apart from those three extreme years,
the distributions of D/Q versus Q are similar in the instrumental record and in the
reconstruction. Notably, the reconstruction reveals some extreme years such as 1808
and 1815, where D/Q is more than 50%.

https://www.coaps.fsu.edu/jma
https://www.coaps.fsu.edu/jma
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Figure B.11. Distribution of the fraction of dry season flow to total annual flow, plot
against the annual flow volume. Some extreme years are annotated.

B.7 Additional Mass Balance Verifications
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Figure B.12. Time series and distribution of the seasonal water budget, similar to
Figures 3.9a and 3.9b in the main text, but for the seasons instead. DS: dry season; WS:
wet season; WY: water year. Dry season’s water budget can be estimated either from
the dry season reconstruction directly, or by subtracting the wet season reconstruction

away from the annual reconstruction. Similarly for the wet season.



Appendix B. Supporting Materials for Chapter 3 111

B.8 Generating Sub-Annual Stochastic Streamflow

As a proof of concept, we illustrate one simple way to generate sub-annual stochastic
streamflow time series from the reconstructions. We first visually examined the distri-
bution of the dry season and wet season reconstructions. After log-transforming the
time series, we plotted their univariate and bivariate distributions using kernel density
estimation (Figure B.13). The marginal distributions are approximately normal; there-
fore, their joint distribution is also approximately normal. We then fitted a bivariate
normal distribution to the time series, and generated 100 stochastic replicates of the
seasonal reconstructions. Each replicate contains 254 years, sampled from the fitted
bivariate normal distribution. This simple sampling scheme does not account for the
autocorrelation of the time series, but it is sufficient for our illustration purposes here.
The sampling process produced two ensembles of stochastic replicates for the two sea-
sons. We then calculated the annual ensemble by summing up the individual pair of
time series from the seasonal ensembles.

Figure B.14 shows a comparison between the three stochastic ensembles and the orig-
inal reconstructions. The ensembles capture the variability of the original reconstruc-
tions well while also producing more extreme events (Figure B.14a). Not only that, the
ensembles also faithfully reproduce the densities of the reconstructions while produc-
ing additional variability (Figure B.14b). These are desirable characteristics that will be
useful in water resources applications, such as stress-testing the water system.

It should be emphasized that the annual ensemble is able to replicate the annual re-
construction well even though we did not sample from the annual distribution di-
rectly. This is only possible because the mass-balance-adjusted regression has produced
nearly identical distributions for the annual water budget, both directly from the an-
nual reconstruction and from the total seasonal reconstruction (Section 3.4.2).
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Figure B.13. Marginal and joint distributions of the dry and wet seasons’ log-
transformed reconstructions. Each dot represents one year. The contours underlying

the dots show the bivariate probability density.
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stochastic replicates generated from a bivariate normal distribution fitted to the recon-
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C.1 Previous streamflow reconstructions in Monsoon Asia

The first streamflow reconstruction in Monsoon Asia was by Davi et al. (2006). As
of May 2019, 27 reconstruction studies have appeared, more than half of which were
published in the last four years (Figure C.1). Each of these works studied a specific
river; most of them focused on China (Table C.1).

0

1

2

3

4

5

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

N
um

be
r 

of
 p

ap
er

s

Figure C.1. Number of Monsoon Asia streamflow reconstruction papers published
each year till September 2019. The publications are listed in Table C.1.
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Table C.1. List of Monsoon Asia streamflow reconstruction papers

Reference Proxy River Country

Davi et al. (2006) Tree ring Selenge Mongolia
Yuan et al. (2007) Tree ring Manasi China
X. Gou et al. (2007) Tree ring Yellow China
Liu et al. (2010) Tree ring Heihe China
X. H. Gou et al. (2010) Tree ring Yellow China
D’Arrigo et al. (2011a) Tree ring Citarum Indonesia
Yang et al. (2012) Tree ring Heihe China
E. R. Cook et al. (2013) Tree ring Indus Pakistan
Davi et al. (2013) Tree ring Kherlen Mongolia
Pederson et al. (2013) Tree ring Yeruu Mongolia
C. Xu et al. (2015) Stalagmite δ18O Jialingjiang China
Chen et al. (2016a) Tree ring Irtysh China
Chen et al. (2016b) Tree ring Shiyang China
Chen and Yuan (2016) Tree ring Guxiang China
R. Zhang et al. (2016a) Tree ring Tuoshigan China
R. Zhang et al. (2016b) Tree ring Aksu China
Chen et al. (2017) Tree ring Kurshab Kyrgyzstan
Panyushkina et al. (2018) Tree ring Ili Kazakhstan
T. Zhang et al. (2018) Tree ring Haba China
Rao et al. (2018) Tree ring Indus Pakistan
Nguyen and Galelli (2018) MADAa Ping Thailand
Li et al. (2018) Tree ring Yangtze China
Chen et al. (2019b) Tree ring Lhasa China
Chen et al. (2019a) Tree ring Salween China
Yang et al. (2019) Tree ring Lancang China
Li et al. (2019) Tree ring Yellow China
C. Xu et al. (2019) Tree ring δ18O Chao Phraya Thailand

a Monsoon Asia Drought Atlas (E. R. Cook et al., 2010a)

C.2 Station Selection

We obtained most of our mean annual flow data from the Global Streamflow Indices
and Metadata (GSIM) Archive (Do et al., 2018; Gudmundsson et al., 2018). The GSIM
authors ignored missing data when calculating mean annual flow, but provided for
each station the fraction of missing days for the whole record length, and the number of
missing days for each year. We first selected stations with no more than 3% of missing
days over the whole record length. Then, for each of these stations, we looked at each
year’s number of missing days, and if this number was greater than 30, we considered
that year’s data as missing. We adopted these criteria to avoid the situation where the
mean annual flow was calculated from too many missing data. After this second step,
we counted the number of non-missing years for each station, and retain only those
having at least 41 years.
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For the Chao Phraya, we obtained monthly flow from the Thai Royal Irrigation De-
partment (hydro-1.net, in Thai) for stations P.1, N.1, and C.2, and calculated the mean
annual flow from the monthly flow. If there were more than one month missing for any
year, that year was considered missing as well (similar to what we did with the GSIM
stations).

For Mekong, Yangtze, Citarum, and Brahmaputra data, we obtained annual flow di-
rectly from our colleagues, and we did not have any information on the degree of miss-
ingness. Mekong data were provided by Thanh Dang, Brahmaputra by Mukund Rao
and Kamal Chowdhury, and Citarum by Rosanne D’Arrigo.

Angat River data were provided by Christoph Libisch-Lehner. The time series is almost
complete, and we did not do any gap filling.

Indus River data were taken from the Supporting Information of Rao et al. (2018).

South Korea data were provided by Donghoon Lee. There were no missing data, but
the longest record was only 39 years. We wanted to have a station for this country, so
we made an exception for the 41-year criterion. Similarly, we made an exception to
the Yeruu River (data provided by Caroline Leland): the mean annual flow here is 49.8
m3/s, slightly less than the 50 m3/s threshold, but we retain this record so as to have a
station in Mongolia.

Figure C.2 shows the distribution of record length over the selected stations.
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Figure C.2. Distribution of the number of non-missing years of the streamflow data
set.
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C.3 Streamflow data preprocessing

We determined the degree of asymmetry of the streamflow data using the Hinkley’s D
statistic (Hinkley, 1977), formulated according to Equation C.1:

D =
m− µ

q
, (C.1)

where m is the sample median, µ the sample mean, and q the sample inter-quartile
range. If log-transforming reduces the absolute value of D for a station, then we will
use the log-transformed flow as reconstruction target; otherwise we use the untrans-
formed flow. We also check the densities of the transformed and untransformed flow
visually (Figure C.3), and found that the densities are similar for most stations.
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Figure C.3. Densities of the transformed and untransformed flow at each station. The
densities are centralized and rescaled for comparison.
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C.4 Additional Validation Exercises

C.4.1 Spatial coherence in the modern period (1950–2012)

As another reliability test for our reconstructions, we checked the spatial coherence
of our reconstructions for the modern period against instrumental streamflow data,
using the same standardization as in Figure 4.6. The results are shown in Figure C.4.
We observe similar coherence among river basins in the instrumental data as in the
reconstruction. The reconstructed streamflow also captures the extreme events very
well.
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Figure C.4. Comparing the reconstructed spatiotemporal variability of streamflow in
the period 1950–2012 with instrumental streamflow data. Gray areas denote no data;

color scale and annotations are the same as Figure 4.6
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C.4.2 Cross-correlation of all streamflow stations

The composite correlation matrix (Figure C.5 is close to symmetry about its diagonal;
in other words, the reconstruction captures the correlation structure of the streamflow
network.
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Figure C.5. Composite correlation matrix of streamflow. The top half shows the cor-
relations in the instrumental data; the bottom half the reconstruction. Stations are
grouped by their region (according to Figure 4.1) and follows the same order as in

Figure 4.6.
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C.4.3 Time series plots
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Figure C.6. Comparing reconstructions and observations for the instrumental period
at four representative stations (those used in Figures 4.3 and 4.8).
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Figure C.7. Full reconstruction time series for the same four stations shown in Fig-
ure C.6. Vertical shaded areas show the megadroughts of Figure 4.6 (from left to
right: Angkor Drought I, Angkor Drought II, Ming Dynasty Drought, Strange Par-

allels Drought, East India Drought, and Victorian Great Drought).
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C.5 Additional streamflow–SST correlation analyses
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Figure C.8. Same as Figure 4.8 in the main text, but for the Godavari River.
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Figure C.9. Same as Figure 4.8 in the main text, but for the Mekong River.
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Figure C.10. Same as Figure 4.8 in the main text, but for the Yangtze River.
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Supporting Materials for Chapter 5
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Figure D.1. Same as Figure 5.5, but using the bias-corrected reconstructions.
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Figure D.2. Monthly streamflow distributions of the instrumental data and the recon-
structions.
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