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Abstract
Engineering Systems and Design

Doctor of Philosophy

Using Satellite Observations to Address Power Asymmetries in Transboundary
River Basins

by VU Trung Dung

Half of the world’s land surface is covered by about 300 transboundary river basins. In
many of these areas, different views on infrastructure development and management
tend to result in conflicting dynamics between riparian countries, even when interna-
tional water agreements are signed. Because of the natural power asymmetry between
upstream and downstream countries, the socio-economic externalities of these power
struggles are often sustained by the riparian communities located in the most down-
stream areas. Such dynamics are typically compounded by the lack of transparency
on how major infrastructures are operated. In most basins, for example, there are no
shared platforms providing a detailed accounting of the amount of water stored and
released by large dams. An opportunity to address the problem stands in satellite ob-
servations, which provide a means to monitor the actual state of rivers and big infras-
tructure.

Here, we turn our attention to the Mekong River Basin—the largest transboundary
river basin in Southeast Asia—where the situation of power asymmetry is emblem-
atic of the issues faced by many transboundary basins around the world. We look,
in particular, at three problems. In the first one, we leverage satellite observations
to infer dam storage variations and operating rules. Specifically, we use area-storage
curves (derived from a digital elevation model) and time series of reservoir water sur-
face area, which we estimate from Landsat satellite images through a novel algorithm
that removes the effects of clouds and other disturbances. In the second problem, we
improve the reliability of macro-scale hydrological models by making use of the in-
ferred reservoir operations—a highly important, but often missing, element in river
basin models. we couple our hydrological model with a hydraulic model used to infer
discharge time series from satellite altimetry data. With the aid of Global Sensitivity
Analysis, we propose an approach to avoid the pitfall occurring when co-calibrating
the two models. Finally, using the output of the two first parts (reservoir operation
patterns and calibrated hydrological model), we assess the impacts on the downstream
areas of the impoundment of upstream reservoirs and also use a numerical framework
to devise better filling strategies for those reservoirs. The data and approaches devel-
oped in this thesis will help enrich the existing tools for water resources monitoring
and management in transboundary river basins.
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Chapter 1

Introduction

1.1 Power asymmetries in transboundary river basins

Transboundary river basins

Transboundary river basins—sometimes referred to as international river basins—are
river basins shared by two or more countries (e.g, the Colorado River Basin is shared by
2 countries, the United States and Mexico, while the Danube River Basin is shared by
19 European countries). By this definition, nearly one-half of the world’s land surface
is covered by more than 300 transboundary river basins, which are shared by about
150 countries (McCracken and Wolf, 2019) (see Fig. 1.1). These international rivers
contribute up to 60 % of the global river flow and support the lives and livelihoods of
an enormous number of people—approximately 40 % of the world’s population (Wolf,
Kramer, et al., 2005).

FIGURE 1.1: Transboundary river basins around the world. 311 trans-
boundary river basins cover nearly one-half of the world’s land surface
and are shared by ∼150 countries. The dot size demonstrates the number
of riparian countries, while the color scheme illustrates the dam density
(number of dams per 1 million km2) in each basin. Data were retrieved

from McCracken and Wolf (2019).
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Conflicts between riparian countries in transboundary river basins

The shared water resource from transboundary rivers is a potential source of conflicts,
even leading to wars between riparian countries. Indeed, there were 1831 international
water conflict cases reported during the period from 1950 to 2000 (Wolf, Stahl, and Ma-
comber, 2003). The recent international water conflicts include those among 11 African
countries (Kenya, Tanzania, the Democratic Republic of the Congo, Burundi, Rwanda,
Uganda, South Sudan, Ethiopia, Eritrea, Sudan, and Egypt) over the Nile River (Abtew
and Melesse, 2014), among China and 5 Southeast Asian countries (Myanmar, Thai-
land, Laos, Cambodia, and Vietnam) over the Mekong River (Pearse-Smith, 2014),
among Turkey, Syria, and Iraq over the Euphrates-Tigris River (Hipel, Kilgour, and
Kinsara, 2019), between Afghanistan and Iran over the Helmand River and the Harirud
River (Amini et al., 2021), and so forth. Under the impacts of global warming (climate
change), the changes in precipitation patterns and increase in evapotranspiration result
in the decline in water availability in many parts of the world including transbound-
ary river basins (Ambec, Dinar, and McKinney, 2013). At the same time, the growth
of the population and economy leads to increased water demand (e.g., irrigation, hy-
dropower production, domestic and industrial uses). These two factors, put together,
could escalate the conflicts and disputes between riparian countries in transboundary
river basins.

International water agreements

To reduce the likelihood of international water conflicts and also resolve existing dis-
putes between riparian countries in transboundary river basins, the international com-
munity and intergovernmental organizations have been constructing principles for in-
ternational watercourse management. The main principles consist of the equitable and
reasonable utilization rule, the no-harm rule (the utilization of transboundary water
in each riparian country must not harm other riparian countries), and the duty to co-
operate including regular data exchanges between riparian countries (Mager, 2015).
Unfortunately, it is difficult to implement such principles because of the complexity
created by different locations, climates, ecosystems, economies, politics, cultures, and
points of view on the use of common water sources of riparian countries (Petersen-
Perlman, Veilleux, and Wolf, 2017). For example, the Convention on the Law of the
Non-Navigational Uses of International Watercourses—referred to as the UN Water-
courses Convention—was voted in favor by 103 countries in the General Assembly
of the United Nations in 1997 (UNEP, 2002), but until now, only 40 countries have
signed or consented to be bound by the agreement (UN, 2023). In the meantime, trans-
boundary basin communities also have been building their own water treaties. How-
ever, the same difficulty is found in the implementation of those treaties. For instance,
China—located in the most upstream of many transboundary rivers (e.g, the Indus,
Ganges-Brahmaputra-Meghna, and Mekong rivers)—has not signed any comprehen-
sive treaties of transboundary river basins which this country shares with other ripar-
ian countries (UN, n.d.).
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Hydropower development in transboundary river basins

Despite the efforts of international and basin communities in devising international
water agreements and the likelihood of escalation of conflicts and disputes over shared
water resources, many countries have been constructing a huge number of hydropower
dams on transboundary rivers to meet their growing electricity demand (Llamosas and
Sovacool, 2021; Ly, Metternicht, and Marshall, 2022). As can be seen in Fig. 1.1, in many
regions in the world such as North America, Europe, South Africa, and Southeast Asia,
transboundary rivers have been heavily exploited for hydropower with a high dam
density (> 50 dams per 1 million km2). A closer look at Southeast Asia (Fig. 1.2) shows
us the dense hydropower dam systems in all 4 transboundary river basins of this re-
gion (The Red River, Mekong, Salween, and Irrawaddy basins—all originating from
the South of China. But it does not end here, another large number of hydropower
dams is planned to join the fleet of the Mekong, Salween, and Irrawaddy basins (WLE
Mekong, 2016; Schmitt et al., 2019).

Challenges in downstream countries

Power asymmetries between riparian countries—upstream countries naturally have
the first access to the shared water source, affecting the flow to downstream countries—
always exist in transboundary river basins. That factor along with the different points
of view of riparian countries on how the transboundary water should be used and
how the infrastructures on the river (e.g., hydropower dams) should be developed and
managed result in the environmental and socio-economic impacts often witnessed in
the riparian communities located in the most downstream areas (Warner and Zawahri,
2012). Such conflicting dynamics are typically compounded by the lack of transparency
on how major infrastructures are operated. For example, there are no shared platforms
providing a detailed accounting of the amount of water stored (and released) by large
dams. With more hydropower dams planned to be built upstream of transboundary
river basins, the downstream countries become more dependent on the flow from up-
stream and passive in managing their water resources due to the lack of data.

1.2 Satellite observations

Satellite observations have a wide range of applications and have been used for decades
in the Earth’s surface sciences. In water resources research and management, satellite
observations could be used as direct or indirect measurements of most components of
the hydrological cycle (e.g., precipitation, evapotranspiration, water surface extent and
level of rivers and reservoirs/lakes, land surface elevation, land cover, soil moisture,
etc.) (Lettenmaier et al., 2015; McCabe et al., 2017). This source of data is considered
a supplement to in situ data. However, in ungauged regions or regions with no access
to in situ data (e.g., in many transboundary river basins, data are not shared among
riparian countries), satellite data are the only available source (Sheffield et al., 2018).

There are 3 main groups of satellite data that are popularly used in water resources
research. The first and most common group is satellite images which can be used to
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FIGURE 1.2: Hydropower development in the transboundary river
basins of Southeast Asia. Data were retrieved from WLE Mekong (2016),

Schmitt et al. (2019), and Wang et al. (2022).

identify the extent of objects on the Earth’s surface (e.g., rivers, lakes, forests, etc.).
Satellite images can be captured by optical sensors (like ordinary cameras) or Synthetic
Aperture Radar (SAR) sensors (Flores-Anderson et al., 2019). Optical sensors have been
used to collect images of the Earth’s surface from satellites for more than 50 years. For
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example, the first Landsat satellite—jointly built by the National Aeronautics and Space
Administration of the U.S. (NASA) and the United States Geological Survey (USGS)—
was launched in 1972. Since optical sensors use different wavelengths and collect their
reflectance on the surface of objects, these sensors can provide colored (multispectral)
images by synthesizing images captured by different wavelength bands, but they can-
not provide information under clouds (Bevington et al., 2018). Meanwhile, SAR sensors
that use radio waves to penetrate clouds can provide cloudless images. Nevertheless,
SAR sensors have just been used recently (e.g., Sentinel 1 SAR was first launched by
the European Space Agency (ESA) in 2014), which could be a limitation if a long ob-
servation (in the past) is required. Other specifications that determine the usability
of satellite images are spatial and temporal resolutions. For instance, Moderate Reso-
lution Imaging Spectroradiometer (MODIS) images (by NASA) have a high temporal
resolution (daily) but a low spatial resolution of 250 m (Salomonson, Barnes, and Ma-
suoka, 2006), while Landsat images have a lower temporal resolution (16 days) but a
higher spatial resolution (30 m) (Bevington et al., 2018). In Fig. 1.3a-c, we illustrate
an example of satellite images (i.e., Landsat 8). Panel a shows the grid of Landsat 8
images with ∼185 m x ∼170 m tiles. Panel b is a Landsat 8 image tile in natural color
band combination, and panel c is a closer look where we can see 30 m x 30 m water
(dark blue) and non-water pixels. We provide information on the specifications of the
most common and free-accessible satellite images in Table 1.1.

The second group is satellite altimetry data which can provide information on the level
of water surface (oceans, rivers, reservoirs, and lakes). Satellite altimeters estimate
the elevation of objects from the traveling time of the wave pulses transmitted from
satellites, reflected by the surface of objects and back to satellites. Altimeters used in
this sort of mission can be either radar altimeters (e.g., Jason, Envisat, and Sentinel
3) (Vignudelli et al., 2019) or laser altimeters (e.g., ICESat) (Ryan et al., 2020). Unfor-
tunately, satellite radar altimeters have sparse spatial coverage. For example, Jason
altimetry data—a product of the National Centre for Space Studies of France (CNES)
and NASA—only can be produced for water bodies that are larger than 350 m along
the satellite ground track (Markert et al., 2019), which makes it not applicable to small
reservoirs and narrow rives. On the other hand, satellite laser altimeters have a long re-
visit time. For instance, the ICESat series (by NASA) has a return period of 91 days. In
Fig. 1.3e-f, we demonstrate an example of satellite altimetry data (i.e., Jason 2). Panel
e shows the ground track of satellite Jason 2, and panel f shows a location (Xiaowan
Reservoir in the Upper Mekong River) where Jason 2 altimetry data are available. We
provide information on the specifications of the most common and free-accessible al-
timetry data in Table 1.1.

The last group is represented by digital elevation models (DEMs), also known as three-
dimensional elevation maps. DEMs can provide information on the topography of
river basins, and partial bathymetry of rivers and reservoirs. DEMs can be produced
by using satellite radars to measure land elevations (e.g., the Shuttle Radar Topography
Mission (SRTM) mission of NASA collected data for a near-global coverage from 11 -
22 February 2000 (USGS, 2009)) or combining information from different optical satel-
lite images of the same object captured from different angles (e.g., the Japan Aerospace
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FIGURE 1.3: Examples of satellite images (Landsat 8) (a-c), altimetry data
(Jason 2) (e-f), and digital elevation models (SRTM-DEM) (g-i). Panel a
illustrates the grid of Landsat 8 images; panel b is a Landsat 8 image tile
(∼185 m x ∼175 m) in natural color band combination, and panel c is
a closer look where we can see water (dark blue) and non-water pixels
(30 m x 30 m). Panel e displays the ground track of satellite Jason 2,
and panel f shows a location (Xiaowan Reservoir in the Upper Mekong
River) where Jason 2 altimetry data are available. Panel g demonstrates
the grid of SRTM-DEM (1 arc-second); panel h is an SRTM-DEM (1 arc-
second) tile (∼110 m x ∼110 m) with the color scheme representing the
value of elevation (m a.s.l.), and panel i is a closer look where we can see

30 m x 30 m pixels.
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TABLE 1.1: Categorization and specifications of the most popular and
free-accessible satellite data.

Category Satellite Organization Best spatial Temporal Operation
resolution resolution period

Landsat 1-3 NASA/USGS 60 m 16 days 1972-1983
Landsat 4-5 NASA/USGS 30 m 16 days 1982-2013
Landsat 7 NASA/USGS 30 m 16 days 1999-2022

Imagery Optical Landsat 8-9 NASA/USGS 30 m 16 days 2013-now
MODIS NASA 250 m 1 day 1999-now

Sentinel 2 ESA 10 m 10 days 2015-now
Sentinel 3 ESA 300 m 27 days 2016-now

SAR Sentinel 1 ESA 5 m 12 days 2014-2021

Topex/Poseidon NASA/CNES n/a 10 days 1992-2002
Jason 1-3 NASA/CNES n/a 10 days 2002-now

Altimetry Radar ERS 1-2 ESA n/a 35 days 1992-2003
Envisat ESA n/a 35 days 2002-2010

Sentinel 3A/B ESA n/a 27 days 2016-now

Laser ICESat 1-2 NASA n/a 91 days 2003-now

DEM SRTM NASA 30 m n/a 11-22/2 2000
ALOS JAXA 30 m n/a 2006-2011

Exploration Agency (JAXA) created ALOS DEM from 3 million satellite images taken
from 2006 to 2011 (Tadono et al., 2015)). Regardless of the method used, current free-
accessible DEMs have a typical limitation that they cannot provide information under
the water surface at the observation time. In Fig. 1.3g-i, we illustrate an example of
digital elevation models (i.e., SRTM-DEM). Panel g shows the grid of SRTM-DEM (1
arc-second) with ∼110 m x ∼110 m tiles. Panel h is an SRTM-DEM (1 arc-second) tile
with the color scheme representing the value of elevation (m a.s.l.), and panel i is a
closer look where we can see 30 m x 30 m pixels. Find the specifications of the most
common and free-accessible DEMs in Table 1.1.

Satellite data seem to be the most efficient and economical solution to address the prob-
lem of data shortage in downstream countries in transboundary river basins. However,
as mentioned above, each type of satellite data has its own limitations (spatial-temporal
coverage and resolution, cloud cover, and other disturbances), meaning that they can-
not be used directly. Therefore, it is necessary to develop new techniques to surmount
those limitations and optimize the use of this data source.
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1.3 Contributions of this thesis

With a desire to address power asymmetries in transboundary river basins, in this the-
sis, we contribute novel methodologies to infer important information from satellite
data and use those data efficiently in water resources management of the downstream
communities, as well as the entire basin). Specifically, we first develop a method to
derive the operations of reservoirs using satellite data. Then, we introduce a new ap-
proach, again leveraging satellite data, to calibrate hydrological models for estimating
the streamflow data. The reliability of our model is improved by the inferred reser-
voir operations, a highly important, but often missing, element in river basin models.
Finally, using the outcome of the two first parts, we evaluate the filling strategy of reser-
voirs upstream and also use a numerical framework to devise better filling strategies
for those reservoirs. We apply our work to the Mekong River Basin where the situation
of power asymmetry is emblematic of the issues faced by many transboundary basins
around the world.

In Chapter 2, we leverage satellite observations to infer a 13-year time series of monthly
storage variations of the 10 largest reservoirs on the mainstream of the Upper Mekong
River—known as the Lancang River. In particular, we use the relationship between
reservoir water level and storage volume (estimated from a digital elevation model)
and time series of reservoir water surface area, which we calculated from Landsat
satellite images by using a novel algorithm that removes the effects of clouds and
other disturbances. We again leverage satellite radar altimetry water level data (Jason
and Sentinel-3) to validate the results derived from satellite imagery for the reservoirs
where altimetry water level data are available.

In Chapter 3, we couple VIC-Res (a macro-scale hydrological model setup for the Up-
per Mekong River Basin including the inferred reservoir operations from Chapter 2—a
highly important, but often missing, element in river basin models) with a hydraulic
model (based on Manning’s equation) used to infer discharge time series from satel-
lite altimetry data. Using Global Sensitivity Analysis, we find the existence of a strong
relationship between the parameterization of the hydraulic model and the modeling
accuracy of VIC-Res represented by a set of performance metrics we consider. The
results of the sensitivity analysis help us to constrain the parameter of the hydraulic
model. Finally, we carry out a calibration exercise for the hydrological model with the
aid of a multi-objective optimization algorithm.

In Chapter 4, we use a simulation-optimization approach, which includes a hydro-
logical model (VIC-Res in Chapter 3) and a multi-objective evolutionary algorithm (ε-
NSGA-II) to optimize the filling strategy for the Lancang dam system. By parameter-
izing the filling strategy, and changing the parameters in their feasible ranges with the
aid of ε-NSGA-II, we explore a large number of alternative filling strategies. Compar-
ing the historical filling strategy (inferred from satellite data in Chapter 2) against the
optimal filling strategies resulted from our experiment, we show how good/balanced
the historical filling strategy is and how much upstream and downstream countries
would have gained and lost if the more balanced filling strategies were used instead of
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the actual strategy.

Finally, in Chapter 5, we conclude this thesis by summarizing the results of using satel-
lite observations to address power asymmetries in transboundary river basins and dis-
cussing the future work that we can develop from this thesis.
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Chapter 2

Satellite observations reveal thirteen
years of reservoir filling strategies,
operating rules, and hydrological
alterations in the Upper Mekong
River Basin

Publication

Vu, D. T., Dang, T. D., Galelli, S., & Hossain, F. (2022). Satellite observations reveal
13 years of reservoir filling strategies, operating rules, and hydrological alterations in
the Upper Mekong River basin. Hydrology and Earth System Sciences 26(9), 2345–2364.
https://doi.org/10.5194/hess-26-2345-2022.

2.1 Introduction

In many transboundary river basins, conflicting dynamics between riparian countries
are typically the result of different views on infrastructure development and manage-
ment (Warner and Zawahri, 2012). Such dynamics are often compounded by the lack of
transparency on how major infrastructure, such as dams, is operated. The situation in
the Lancang-Mekong River basin is no exception: during the past 3 decades, the basin
has witnessed a rapid development of its hydropower fleet (Chowdhury, Dang, Hung
T. T. Nguyen, et al., 2021), which has altered the hydrological regime (Dang, Cochrane,
et al., 2016; Räsänen et al., 2017) and changed the sediment budget (Kondolf et al., 2018;
Binh, Kantoush, and Sumi, 2020), thereby degrading riverine ecosystems and threaten-
ing riparian communities (Sabo et al., 2017; Soukhaphon, Baird, and Hogan, 2021). In
turn, these profound and ramified changes have challenged the relation between ripar-
ian countries (Wei et al., 2021). In this water-energy management “mishmash”, China
plays a critical role. First, the river originates in the Tibetan Plateau and flows within
the Chinese borders for about 2000 km, creating a natural power asymmetry with the
other riparian countries (Kattelus et al., 2015). Second, China has built a limited num-
ber of dams—only 11 out of the 100 or more that currently punctuate the entire basin
(Hecht et al., 2019). Yet, these few dams in the Upper Mekong River, or Lancang, have
massive storage capacity (∼42 km3) and control a sizeable portion of the river discharge

https://doi.org/10.5194/hess-26-2345-2022
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(about 55 % of the average annual flow measured in Northern Thailand). Third, China
has participated fairly weakly in transboundary water cooperation efforts, prioritizing
bilateral cooperation to multi-country engagements, such as the Mekong River Com-
mission (Kattelus et al., 2015; Williams, 2020). Fourth, China has yet to share detailed
and comprehensive data on dam operations; agreements on data sharing and quality
control are only at their infancy (Johnson, 2020). For these reasons, the Lancang’s dams
have become a source of controversy between China and downstream countries (IRN,
2002; Eyler and Weatherby, 2020; Kallio and Fallon, 2020). But to assess their actual im-
pact and inform cooperative efforts, we must first quantify and understand how these
dams have been operated.

There are at least two approaches available to tackle this challenge. The first one builds
on the idea of generating data on reservoir inflow, storage, and release via simula-
tion with a process-based hydrological-water management model, a solution recently
explored for the Mekong Basin by Dang, Chowdhury, and Galelli (2020), Yun et al.
(2020), and Shin et al. (2020). Naturally, this is only a partial fix, since the simulation of
water reservoir storage and operations still requires some basic information on design
specifications and operational strategies. The second approach relies on satellite re-
mote sensing, which provides a means to directly observe a few key variables. Satellite
altimeters, for example, provide high-resolution water level data of lakes and reser-
voirs (Schwatke et al., 2015; Busker et al., 2019; Biswas, F. Hossain, Bonnema, Okeowo,
et al., 2019), while optical satellite images can be processed to map and detect changes
in water surface area (Pekel et al., 2016; Zhao and Huilin Gao, 2018; Pickens et al.,
2020). Moreover, data on water level and area can be combined with information on
bathymetry (e.g., elevation–area curve) to infer the storage time series (see the review
by Huilin Gao (2015)). The widespread availability of satellite data has indeed sparked
research on monitoring of reservoir operations in several ungauged basins across the
globe (Huilin Gao, C. Birkett, and Lettenmaier, 2012; Duan and Bastiaanssen, 2013;
Bonnema, Sikder, et al., 2016; Busker et al., 2019), including the Mekong River Basin.
For example, K.-T. Liu et al. (2016) used satellite radar altimetry and Landsat images to
estimate the water level of two reservoirs in the Lancang (Xiaowan and Jinghong) for
the period 2000–2015. Their analysis was limited to cloudless Landsat images, so the
time series derived this way have an irregular temporal resolution. Shortly after, Bon-
nema and F. Hossain (2017) and Bonnema and F. Hossain (2019) estimated reservoir
storage change for several sites of the Mekong, focusing primarily on its lower reaches.

Importantly, the aforementioned approaches and data have started to find their way
into decision support systems used by the Lower Mekong countries. A first exam-
ple is the Mekong Dam Monitor, an online platform for near real-time monitoring of
dams developed by the Stimson Center and Eyes on Earth (https://www.stimson.
org/project/mekong-dam-monitor/, last access: 20 January 2022). Specifically,
the platform uses Sentinel 1 and 2 images to provide weekly updates of water level
in the 13 dams built on the main stem—plus 14 additional reservoirs on the river trib-
utaries (Eyler, Basist, et al., 2020). Because Sentinel 1 and 2 were launched in April
2014 and June 2015, respectively, the available time series are relatively short and do
not include the filling period of the two largest reservoirs in Lancang, Nuozhadu and

https://www.stimson.org/project/mekong-dam-monitor/
https://www.stimson.org/project/mekong-dam-monitor/
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Xiaowan (for additional details on the difference between the methodology used in
this study and the one adopted by the Mekong Dam Monitor, please refer to Text
A.1 in Appx. A). Another example is the Reservoir Assessment Tool (RAT, https:
//depts.washington.edu/saswe/rat_beta/, last access: 20 January 2022), an
online tool for near-real-time monitoring and impact analysis of existing and planned
reservoirs (Biswas, F. Hossain, Bonnema, Lee, et al., 2021). RAT uses Landsat 5 and
8 images to monitor ∼1500 reservoirs in South America, Africa, and Southeast Asia,
including six in the Lancang River basin.

Notwithstanding these recent advances, a deeper understanding of dam operations in
the Lancang River basin is needed to inform the downstream countries and seek coop-
erative solutions spanning across the entire basin. A first complexity is the lack of water
level and storage time series (for each reservoir in the Lancang Basin) with adequate
temporal resolution and horizon—ideally, each time series should have at least a data
point per month and cover the entire life span of a given dam. Here, an important chal-
lenge lies with data availability: Landsat images are available for almost any reservoir
and span more than 3 decades but are affected by clouds (Busker et al., 2019; Biswas,
F. Hossain, Bonnema, Lee, et al., 2021), thereby requiring an image enhancement pro-
cess (Huilin Gao, C. Birkett, and Lettenmaier, 2012; S. Zhang, Huilin Gao, and Naz,
2014; Avisse et al., 2017). Conversely, satellite altimeter observations are less subject
to external disturbances. However, they either have sparse spatial coverage (satellite
radar altimeters)—data are not available for all reservoirs due to their narrow ground
track and orbit—or have a long revisit time (satellite laser altimeters). The ICESat se-
ries (satellite laser altimeters), for example, has a 91 d return period. Second, we need
to discover the filling strategy of these dams, that is, the rate at which they have been
filled. Unveiling these strategies could help understand past changes in downstream
water availability and prepare contingency plans, since China is planning to build 10
more dams in the Lancang (MRC, 2020a). Third, the availability of monthly storage
data is the prerequisite for any event attribution analysis on droughts and pluvials. In
other words, detailed information on the operations of the Lancang’s dams could help
us explain whether or how they contributed to recent extreme events (Keovilignavong,
T. H. Nguyen, and Hirsch, 2021).

In this study, we address the three knowledge gaps described above. To this purpose,
we rely on a 30 m digital elevation model (DEM) from the Shuttle Radar Topography
Mission (SRTM), satellite imagery (Landsat 5, 7, and 8), and altimetry water level data
(Jason and Sentinel-3) (Sect. 2.2). particular, we use the DEM data to identify the el-
evation–storage and area–storage curves and process the Landsat images to generate
monthly time series of water surface area for each reservoir. In this analysis, we im-
prove the algorithm introduced by Huilin Gao, C. Birkett, and Lettenmaier (2012)—and
modified by S. Zhang, Huilin Gao, and Naz (2014)—for processing cloudy images and
tailor it to Landsat data. We then infer the time series of reservoir storage by combining
information on water surface area and area–storage curve and validate the results us-
ing the altimetry water level data with the elevation–storage curve (Sect. 2.3). With the
storage time series at hand, we unveil the filling strategies, infer the rule curves, and
relate the downstream hydrological alterations to the reservoir management strategies

https://depts.washington.edu/saswe/rat_beta/
https://depts.washington.edu/saswe/rat_beta/
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(Sect. 2.4). Building on this knowledge, we identify and discuss opportunities for im-
proving the management of the Lower Mekong resources under present and future
scenarios (Sects. 2.5 and 2.6).

2.2 Study site and data

2.2.1 Study site

The Mekong is a transboundary river flowing across Southwest China and Southeast
Asia (Fig. 2.1a). The river originates from the Tibetan Plateau at an altitude of about
5200 m a.s.l. and flows in a northwest-southeast direction through six countries (China,
Myanmar, Laos, Thailand, Cambodia, and Vietnam) before pouring into the East Viet-
nam Sea. The Mekong drains an area of 795 000 km2 with an average annual discharge
of approximately km3. Its upper portion is 2140 km long and drains an area of 176 400
km2. The high mountains and low valleys characterizing the Lancang River basin con-
tribute to the spatial variability of precipitation, whose annual average varies from 750
to 1025 mm across the basin. Precipitation is also unevenly distributed across the year,
with two distinct dry (December to May) and wet (June to November) seasons. The
streamflow reflects a similar seasonal pattern (Yun et al., 2020). Although the drainage
area of the Lancang River accounts for about 22 % of the total catchment area, the Lan-
cang contributes only to 16 % of the average annual discharge of the whole Mekong
River (MRC, 2009).

The advantageous topography and abundant water availability make the Lancang River
basin an ideal spot for the hydropower industry (Dang, Chowdhury, and Galelli, 2020).
The first dam on the mainstream of the Lancang (Manwan) began its operations in
1992, followed by Dachaoshan in 2003 and Jinghong in 2008. The two largest dams (Xi-
aowan and Nuozhadu) became operational in 2009 and 2013, respectively. And since
2016, at least one dam has joined the Lancang’s reservoir system every year. Overall,
this rapid transformation of the basin resulted in a system comprising 11 operational
and 1 planned dam (Fig. 2.1b).

The design of the cascade reservoir system reflects the topographic characteristics of
the basin. Specifically, the presence of narrow valleys with steep sides required the
construction of high dams (see Fig. 2.2 and the list of design specifications in Appx.
A Table A.1 In turn, this resulted in reservoirs with large storage capacity relative to
inflow, steep banks, and long and horizontally narrow shapes. The total storage capac-
ity is 42 170 Mm3, about 55 % of the average annual discharge at Chiang Saen gauging
station, the first downstream station with publicly available data (Fig. 2.1). These reser-
voirs form a long and complex cascade system, so it is only by studying it in its entirety
that we can understand how storage operating patterns have evolved over the past
decade.



Chapter 2. Satellite observations reveal thirteen years of reservoir filling strategies,
operating rules, and hydrological alterations in the Upper Mekong River Basin

14

FIGURE 2.1: The Mekong and Lancang River Basins ((a) and (b), re-
spectively). In both maps we report the location of the gauging sta-
tion as well as the hydropower dams on the main stem of the Lancang.
All dams were operational as of December 2020, with the exception of
Tuoba, which is currently under construction. The dams analyzed in our

study are denoted by a green circle.

2.2.2 Data

In this study, we focus on the 10 largest operational reservoirs (each with a volume
larger than 100 Mm3), all located on the main stem of the Lancang River. We select
2008–2020 as our study period because it includes the year of commission of most dams
(8 out of 10), a choice that allows us to study their operations during the filling period as
well as under regular operating conditions. Extending the temporal horizon to include
the year of commission of the two remaining dams (Manwan and Dachaoshan, com-
missioned in 1992 and 2003) would complicate the analysis unnecessarily, since their
aggregated storage capacity corresponds to only 2.14 % of the current total system ca-
pacity. For the aforementioned study period we gathered data on the digital elevation
model (DEM), satellite imagery, and radar altimetry water level.

Digital elevation model

Digital elevation models contain the information on terrain elevation needed to rep-
resent reservoir bathymetry, so they are commonly used to establish the relationship
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FIGURE 2.2: Cascade reservoir system on the Lancang River. Further
details about the design specifications are provided in Table A.1

between water level and water surface area (Bonnema, Sikder, et al., 2016; S. Zhang
and Huilin Gao, 2020). In this study, we use the global 30 m spatial resolution DEM
obtained by the Shuttle Radar and Topography Mission (SRTM). The SRTM-DEM pro-
vides the terrain elevation above the water level at the observation time of the SRTM
mission (February 2000) in signed integer raster format. The SRTM-DEM is the best
choice for representing reservoir bathymetry on the Lancang River because of its high
spatial resolution, acquisition time (9 out of 10 selected reservoirs were constructed af-
ter February 2000), and free accessibility. We note that the reservoir construction may
have slightly changed the bathymetry, but these changes are negligible for our study
site. That is for two reasons. First, Lancang’s reservoirs have horizontally narrow and
long shapes. Their length varies from about 25 km (Dahuaqiao) to about 198 km (see
Fig. 2.2). Because of these characteristics, dam construction sites (typically carried out
near the dam location) only affect a very small portion of the reservoir bathymetry.
Second, Lancang’s reservoirs have a large portion of dead storage, from about 32 %
(Xiaowan) to 87 % (Wunonglong). Therefore, the reservoir bathymetry in the variation
range of the reservoirs is barely affected by dam constructions.

Satellite imagery

We use images from Landsat 5, 7, and 8 to estimate the water surface area of the Lan-
cang reservoirs. That is for four reasons. First, Landsat imagery has been collected for
a long time, so it covers our study period. Second, Landsat images have a high spa-
tial resolution (30 m), which is suitable to detect changes in the water surface area of
reservoirs with long and horizontally narrow shapes, like the ones in our study site.
For instance, the width (at full capacity) of Nuozhadu and Xiaowan reservoirs, the two
largest reservoirs on the Lancang River, is only ∼1500 and ∼1000 m. Third, the fre-
quency of Landsat imagery (16 d) is enough to assess the change of reservoir water
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surface area with a monthly time step—a reasonable temporal resolution for reservoirs
characterized by massive storage capacities (see Fig. A.1). Moreover, we can double the
number of images for each month because the active period of Landsat 7 (1999–present)
overlaps with the active period of Landsat 5 (1984–2013) and Landsat 8 (2013–present).
Fourth, Landsat imagery has been successfully used in other studies to estimate reser-
voir water surface area (e.g., Duan and Bastiaanssen (2013), Avisse et al. (2017), Bon-
nema and F. Hossain (2017)). The images used in this study are archived from the
Landsat Collection-1 Level-2 (Surface Reflectance) of the United States Geological Sur-
vey (USGS). It is also worth mentioning here that (publicly available) imagery provided
by other missions, such as MODIS (Moderate Resolution Imaging Spectroradiometer)
and Sentinel, may not be best suited for this study. MODIS imagery has a high fre-
quency (twice a day) but a lower spatial resolution (250 m), which makes it unsuitable
for estimating the water surface area of medium and small reservoirs or large, but hor-
izontally narrow, reservoirs (the width of all reservoirs, except for the two largest ones,
varies from 300 to 600 m). Meanwhile, Sentinel has been operational since 2015, so its
temporal coverage is not sufficiently long for our analysis. Further details concerning a
comparison between Landsat, MODIS, and Sentinel imagery are reported in Table 1.1.

Radar altimetry water level data

Satellite radar altimeters have been used for decades to monitor the ocean and large
reservoirs and lakes (Schwatke et al., 2015)—see Table 1.1 for additional details on
satellite altimeters. Because radar altimetry data from each satellite are not available
for all reservoirs, we make use of all available sources of radar altimetry data pre-
viously processed into water level time series—following the methods developed by
the NASA Ocean Altimeter Pathfinder Project—and published by the Global Reser-
voirs and Lakes Monitor (G-REALM) (C. M. Birkett et al., 2011). Specifically, we use
Jason-2 (2008–2016) for Nuozhadu, Xiaowan, and Huangdeng, Jason-3 (2016–2020)
for Xiaowan and Huangdeng, Sentinel-3A (2016–2018) for Nuozhadu, and Sentinel-3B
(2019–2020) for Jinghong. As we shall see, the lack of radar altimetry water level data
for the remaining reservoirs does not affect the conclusions of our study, since we use
them only for the purpose of validating the results obtained through satellite imagery.

2.3 Methodology

Our methodology is chiefly aimed at estimating (and validating) the storage time series
of each reservoir. According to this purpose, we follow three main steps, illustrated in
Fig. 2.3. We begin by processing the information contained in the DEM to estimate the
relationship between water level (WL) and water surface area (WSA) for each reser-
voir. With this relationship, also called the elevation–area (E–A) curve, we calculate
the elevation–storage (E–S) curve (the relationship between WL and storage volume)
and the area–storage (A–S) curve (the relationship between WSA and storage volume).
Then, we estimate the WSA of each reservoir from all Landsat images available for our
study period. To carry out this step, we rely on a novel variant of the WSA estimation
algorithm developed by Huilin Gao, C. Birkett, and Lettenmaier (2012) and modified
by S. Zhang, Huilin Gao, and Naz (2014). Finally, we use the A–S curves and WSA
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time series to infer how the storage of each reservoir varied during the study period.
We validate our methodology on two reservoirs located outside of the Lancang Basin:
Bhumibol reservoir in Chao Phraya River basin and Ubol Ratana reservoir in Lower
Mekong River basin, for which storage and water level data are publicly available (see
Figs. A.2 and A.3). A detailed explanation of these steps is provided in Sect. 2.3.1
and 2.3.2. In Sect. 2.3.3 and 2.3.4, we describe the numerical approaches adopted to
estimate the reservoir filling strategies and analyze the effect of reservoir operations on
downstream discharge.

FIGURE 2.3: Flowchart representing our methodological approach. The
two key steps are the calculation of the E–A, E–S, and A–S curves (from
the DEM) and the estimation of the WSA (from Landsat imagery). With
this information at hand, we estimate the storage time series of each
reservoir. The altimetry water level data are coupled with the E–S curve
to re-estimate the storage time series with independent data, thereby val-

idating the estimation based on Landsat imagery.

2.3.1 Estimating the E-A, A-S, and E-S curves

Recall that for 9, out of 10, reservoirs, the SRTM-DEM can provide full information on
bathymetry (Sect. 2.2.2). To estimate the E–A curve of these reservoirs, we first isolate
the DEM data with the contour corresponding to maximum water level and dam crest
line. The purpose of this step is to calculate the curve within the extent of the reservoir
only and thus avoid errors due to the inclusion of surrounding areas. Then, we calcu-
late the surface area corresponding to each 1 m elevation of the DEM. Specifically, with
each elevation value (each meter) from the lowest elevation within the reservoir extent
to the maximum water level, we count the number of pixels having a value equal to or
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smaller than that elevation value. This is because, when water reaches that elevation,
the area corresponding to those pixels is inundated. Then, we multiply the number
of pixels by the pixel size (30 m × 30 m) to get the water surface area. We finally fit
a fifth-degree polynomial (degree determined by trial and error) to the data points so
obtained. For the remaining reservoir, Manwan, we apply the same procedure but only
to the portion above the water level recorded by the SRTM. To approximate the E–A
curve below that water level, we fit a fifth-degree polynomial to the part above the
water surface and then extend it below the water surface, as in Bonnema, Sikder, et al.
(2016) and Bonnema and F. Hossain (2017).

With the E–A curve at hand, we calculate the storage volume corresponding to each 1 m
elevation of the DEM. This operation is carried out using the following trapezoidal ap-
proximation (Huilin Gao, C. Birkett, and Lettenmaier, 2012; Bonnema and F. Hossain,
2019; Li et al., 2019; Tortini et al., 2020):

Vi =
i∑

j=l+1

(Aj +Aj−1)(Ej − Ej−1)/2, (2.1)

where Vi is the storage volume corresponding to the water level Ei and water surface
area Ai, and l denotes the lowest elevation of the reservoir bathymetry (i.e., Al = 0).
The trapezoidal approximation is used here instead of a direct calculation from the
DEM because the latter is not applicable to Manwan—while it is desirable to mini-
mize the differences in data processing for all reservoirs. In addition, with the E–A
curves validated by water level observations (from altimetry data) and water surface
area (from Landsat images), we can confidently develop the E–S and A–S curves from
the E–A curves using the trapezoidal approximation (recall we do not have observed
storage data to validate the E–S and A–S curves estimated directly from the DEM).
To strengthen the rationale for using the trapezoidal approximation, we compare the
results obtained with the two methods. The differences in storage corresponding to
each water level in the variation range are not more than 1 % (for Jinghong, Miaowei,
Huangdeng, and Wunonglong) and 2 % (for Nuozhadu, Dachaoshan, Xiaowan, Gong-
guoqiao, and Dahuaqiao). The detailed comparisons for Nuozhadu and Xiaowan reser-
voirs can be found in Table A.2 and Fig. A.4. Finally, we use the data points on storage
volume to fit the A–S and E–S curves. All aforementioned operations are carried out in
Python 3.7 with the aid of the OSGeo library.

2.3.2 Inferring the water surface area

Water surface data can be inferred from Landsat images by classifying each pixel with
either a single spectral band (e.g., near-infrared band) or a spectral index calculated
from multiple bands (see Table A.3 for a list of the most common indices). In gen-
eral, the use of a single spectral band reduces the computational requirements (Li et al.,
2019), but spectral indices tend to provide more robust results (K.-T. Liu et al., 2016).
Whatever the method used, one key challenge with Landsat images stands in the pres-
ence of clouds, cloud shadow, and no-data pixels (for Landsat 7), which may lead to
a misclassification of water pixels and the consequent underestimation of the water
surface area. To handle this problem, we use a novel variant of the WSA estimation
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algorithm introduced by Huilin Gao, C. Birkett, and Lettenmaier (2012) and S. Zhang,
Huilin Gao, and Naz (2014), originally conceived to extract water surface area from the
normalized difference vegetation index (NDVI) layer—which is included in the 250 m
resolution global Terra MODIS vegetation indices (MOD13Q1), a level-3 MODIS prod-
uct provided by NASA.

Like the modified version by S. Zhang, Huilin Gao, and Naz (2014), our algorithm con-
sists of two main phases: mask creation and water classification improvement, illus-
trated in Fig. 2.4 with light blue and light green boxes. In the first phase, the cloudless
images are processed together to create two products: the expanded mask and zone
mask. The two masks are then used in the second phase, where the Landsat images
are individually processed to obtain the water surface area corresponding to the col-
lection time of each image. The major modifications with respect to the version by S.
Zhang, Huilin Gao, and Naz (2014) are the selection of cloudless images (Step 1.1) and
identification of additional water zones (Step 2.5), two modifications needed to ensure
that the algorithm performs well with Landsat images (instead of the NDVI layer of
MOD13Q1). Further details for each phase and step are provided below.

FIGURE 2.4: WSA estimation algorithm. The first phase is aimed at the
creation of the expanded mask and zone mask, while the second phase
focuses on the processing of each image to yield the water surface area.

(1.1) Selection of cloudless images. Cloudless images are the ones that do not contain
clouds or contain very little clouds on the reservoir surface extent. For our application,
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we define a cloudless image as an image with less than 20 % of cloud cover on the maxi-
mum reservoir surface extent. To identify these images, we use the BQA band (the band
of quality assessment), which contains the information on cloud pixels. As we shall see,
working on a subset of cloudless Landsat images is necessary to preserve the quality of
the frequency map and masks produced in the next steps. Note that the version by S.
Zhang, Huilin Gao, and Naz (2014) did not include this step because cloud effects are
partially removed from the NDVI layer in MOD13Q1 (Didan and Munoz, 2019). This
is the result of selecting the best available pixel value (the low clouds and the highest
NDVI value) from all daily acquisitions within a 16 d period.

(1.2) NDWI-based classification. To classify the water and non-water pixels, we use the
normalized difference water index (NDWI) with a threshold value equal to 0. The
choice of index and corresponding threshold is based on a preliminary analysis, in
which we compared the performance of NDWI, NDVI, and MNDWI (modified normal-
ized difference water index) for all 10 reservoirs. The results of Xiaowan and Nuozhadu
reservoirs, reported in Figs. A.5 and A.6 for 60 cloudless Landsat images for each reser-
voir, show that the NDWI-based classification matches the maximum water extent re-
ported in the Maximum Water Extent dataset, developed by the European Commis-
sion’s Joint Research Centre (Pekel et al., 2016). On the other hand, NDVI and MNDWI
tend to provide less reliable results. As for the threshold value, 0.05 and 0.1 (for NDWI)
tend to lead to an underestimation of the water pixels, since the total number of times
a water pixel is correctly classified as water is less than 60. We also manually checked
the obtained water layers with the true-color Landsat images for a number of images
before making our decision of using NDWI. The NDWI layers calculated this way are
subsequently used in Step 2.2.

(1.3) Frequency map creation. To create the frequency map, we first calculate the percent-
age of times in which a pixel is classified as water (based on its NDWI value) in all
selected cloudless images. This operation is carried out for all pixels within the bound-
ing box of the reservoir extent. Then, we create the frequency map by selecting the
pixels with frequency larger than 0. This step is illustrated in Fig. 2.5a, b.

(1.4) Frequency map expansion. We expand the frequency map by buffering it with three
additional pixels; in other words, we add three pixels around the peripheral water pix-
els (see Fig. 2.5a, b). The expansion is aimed to ensure that no possible water pixels
are missed out. This 90 m buffer around the nominal shoreline is deemed sufficient for
our case study, since reservoirs in the Lancang are located in steep terrains, where the
storage is controlled by elevation more than area. The expanded frequency map is used
in Step 2.2 to clip the NDWI layer; hereafter, we refer to it as the expanded mask.

(1.5) Zone mask creation. In the last step of Phase 1, we convert the frequency map into a
50-zone mask. As illustrated in Fig. 2.5c, the i-th zone contains the pixels classified as
water with a frequency greater than 2 · (i− 1) % and less than or equal to 2 · i % (with
i = 1, . . . 50). For example, Zone 1 contains the pixels classified as water from 0 % to
2 % of the time, while Zone 2 contains those classified as water from 2 % to 4 % of the
time. At the end of this phase, we obtain the two inputs for the next phase, that is, the



Chapter 2. Satellite observations reveal thirteen years of reservoir filling strategies,
operating rules, and hydrological alterations in the Upper Mekong River Basin

21

FIGURE 2.5: Examples of a frequency map (a, b), expanded mask (a, b),
and zone mask (c).

expanded mask and zone mask.

(2.1) NDWI calculation. Here, we calculate the NDWI index for the remaining Landsat
images—with clouds, cloud shadow, and no-data pixels—and pass them to the next
step in the form of a raster layer for each image. Note that the goal of this second
phase is to improve the water surface classification of the images, so as to maximize
the number of data points available for our study period, especially for the monsoon
season when Landsat observations are heavily affected by clouds. Failing to improve
the cloudy images can make the water surface area estimates inaccurate.

(2.2) Clipping the NDWI layer by the expanded mask. The NDWI raster layer obtained in
Steps 1.2 and 2.1 is clipped by the expanded mask created in Step 1.4.

(2.3) k-means-based classification of the water pixels. Because of the presence of clouds, and
other disturbances, the of use of the same NDWI threshold (equal to 0) in all Landsat
images may lead to overestimation or underestimation errors of the water surface area.
To find NDWI thresholds for each Landsat image, we resort to k-means clustering.
Specifically, we set k equal to 3 (a value found by trial-and-error) and apply k-means
clustering to all pixels in the NDWI layer (Fig. 2.6a). Water pixels tend to fall into the
cluster with the highest NDWI value because the NDWI of water pixels has a higher
value than the one of non-water pixels. Results are verified by manually checking the
classified water layer with true-color Landsat images.

(2.4) Water fraction calculation (by zone). The zone mask created in Step 1.5 is used here
to divide the water extent layer (obtained in the previous step) into 50 zones. For the
i-th zone, we define the water fraction pi as follows:

pi = ni/Ni, i = 1, 2, ..., 50, (2.2)
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FIGURE 2.6: Illustration of the k-means classifications used in Steps 2.3
and 2.5. Panel (a) shows the water pixels classification based on NDWI
values (Step 2.3), while panels (b,c) show the identification of additional
water zones based on two clusters (Step 2.5). Panel (d) illustrates the

issues that raise when using three clusters in Step 2.5.

where pi represents the ratio between the number ni of pixels classified as water in
zone i (with the NDWI-based k-means clustering) and the total number Ni of pixels in
zone i (retrieved from the zone mask). The information provided by the water fraction
of each zone is used in the next step to improve the water pixel classification.

(2.5) Identification of additional water zones. We improve the classification of water pixels
by identifying the additional water zones based on their water fraction. To do so, we
resort again to the k-means clustering algorithm. Moreover, because of the continuity
of water extent (water expands from higher frequency to lower frequency zones), we
also take into account the zone number (or frequency value). Then, we formulate a
clustering problem in a two-dimensional space constituted by water fraction and zone
number. We solve the clustering problem with a value of k equal to two, found by trial
and error. Fig. 2.6b and c shows two examples with k=2, while Fig. 2.6d reports an
example for an unsuitable value of k. The lowest zone in the higher cluster (zone 14
in Fig. 2.6b and zone 31 in Fig. 2.6c) is the threshold above which zones are converted
to water pixels. The reason for converting all pixels from the threshold zone onwards
to water pixels is that the pixels in the same zone have the same (or very similar) in-
undation probability, and, at each observation time, they fall into one of two scenarios:
(1) they are both non-water pixels, or (2) they are both water pixels (even when the
water fraction of that zone is less than 100 %, due to cloud cover). Naturally, there can
be a small error from the threshold zone. For example, Zone 14 in Fig. 2.6b contains
pixels with 26 %-28 % inundation probability, but sometimes, the threshold of inunda-
tion probability is not exactly 26 % (e.g., 26.5 %, 27 %, ...). Note that we could increase
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the performance by dividing the frequency map into a larger number of zones, but this
would require a larger number of cloudless images. This step represents the second
modification of the original WSA estimation algorithm, which uses a quality parame-
ter not suitable for Landsat images – since the cloud effects are not mitigated, unlike
the NDVI layer in MOD13Q1.

(2.6) Overlapping. Finally, the layer of additional water pixels is overlapped on the
layer of water extent obtained in Step 2.3. The final output is the improved water
classification for each image characterized by cloud cover or other disturbances. All
the aforementioned operations are carried out in Python 3.7 with the aid of the OSGeo
and SKLearn libraries.

2.3.3 Inferring the reservoirs’ filling strategies

Determining the filling strategy of a reservoir means deciding the rate with which the
reservoir is filled and, therefore, the fraction of inflow that is retained on a periodic
basis—monthly, in our case. The problem is formalized by the following mass balance
equation:

St = St−1 + θ ·Qt − Et, (2.3)

where St is the reservoir storage at time t, Qt is the inflow volume in the interval
(t− 1, t], Et is the evaporation loss in the interval (t− 1, t], and θ is a parameter varying
between 0 and 1 and expressing the fraction of inflow volume retained by the reservoir.
In our case, the goal is to determine the value of θ (in each month) for Nuozhadu and
Xiaowan during the periods 2012-2013 and 2009-2010, respectively.

Observed inflow data are not available, so we resort to modeled ones. Specifically,
we use daily inflow data simulated by VIC-Res (Dang, Chowdhury, and Galelli, 2020;
Dang, Vu, et al., 2020), a variant of the variable infiltration capacity (VIC) model—a
large-scale, semi-distributed hydrological model first developed by Liang et al. (2014).
Similarly to VIC, VIC-Res contains a rainfall–runoff module and a routing module.
In the first module, the study region is organized as computational cells with a cus-
tomizable cell size (0.0625◦ in our case), in which key hydrological processes (evapo-
transpiration, infiltration, baseflow, and runoff) are calculated as a function of hydro-
meteorological forcings (precipitation, temperature, wind speed, etc.) and soil param-
eters. Then, the routing module routes the simulated runoff and baseflow throughout
the river network using the linearized Saint-Venant equation (Lohmann, Nolte-Holube,
and Raschke, 1996; Lohmann, Raschke, et al., 1998). In VIC-Res, the routing process in-
cludes a detailed representation of water reservoir operations: for each reservoir in a
given study site, the model calculates the mass balance and release, with the latter de-
termined by operating rules or predefined release time series. VIC-Res has been tested
on several sites, including the Lancang River basin (over the period 1996–2005). In par-
ticular, Dang, Chowdhury, and Galelli (2020) reported the results of model calibration
with observed discharge at Chiang Saen station and model validation with observed
discharge at Jiuzhou station, located right upstream of Xiaowan reservoir.
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Here, we use the same VIC-Res model, which we force with rainfall and tempera-
ture (maximum and minimum) data retrieved from CHIRPS-2.0 and ERA5 dataset.
Land use and cover data were obtained from the Global Land Cover Characterization
dataset, while the soil data were extracted from the Harmonized World Soil Database.
The monthly leaf area index and albedo were derived from the Terra MODIS satellite
images, which provide changes in canopy and snow coverage over time. The flow di-
rection map used by VIC-Res is based on the SRTM-DEM. Since Dang, Chowdhury, and
Galelli (2020) considered the dams built before 2005 and used the rule curves proposed
by Piman et al. (2013), we slightly adapt the model to handle two challenges for our cur-
rent study: (1) consider more reservoirs (all dams on the mainstream built until 2013)
and (2) leverage the actual storage data retrieved from satellite data. To set up VIC-Res
in our study, we therefore proceeded as follows. For each reservoir, we take data on
inflow (simulated), storage (estimated from the satellite data), and evaporation (simu-
lated using the estimated water surface area and evaporation rates calculated with the
Penman equation). We then invert the mass balance equation to calculate the release,
which is used as input to VIC-Res to simulate the storage dynamics of each reservoir.
The process is repeated sequentially—starting with the most upstream dam—so as to
ensure that the cascading impacts of dams are captured correctly. To ensure the reli-
ability of this analysis, we extend the model validation at Chiang Saen for the filling
period of Nuozhadu and Xiaowan (2009–2013); see Fig. A.7. The comparison between
modeled and simulated storage is reported in Fig. A.8.

2.3.4 Indicators of hydrological alteration

The availability of storage data also allows us to decipher the impact of dam operations
on downstream (measured) discharge. To do that, we calculate two time-varying in-
dicators of hydrological alteration (I1 and I2). I1 represents the fraction of the natural
flow retained in the reservoir system for each month in which the system is storing wa-
ter (i.e., when ∆St = St−St−1 > 0). I2 represents the fraction of the actual flow released
from the reservoir system for each month in which the system is releasing water (i.e.,
∆St < 0). I1 and I2 are calculated as follows:

I1,t =
∆St

∆St +Qt
, (2.4)

I2,t =
∆St

Qt
, (2.5)

where Qt is the observed discharge volume downstream of the reservoir system (at
Chiang Saen) in month t. Note that the denominator in Eq. (2.4) approximates the
natural flow in month t (it is the sum of actual discharge and volume of water retained
upstream in a given time interval).

2.4 Results

We begin this section by reporting the results of the analysis of DEM and satellite im-
agery, that is, the E–A, A–S, and E–S curves (Sect. 2.4.1) and water surface area (Sect.
2.4.2). We then present the storage time series of each reservoir, the information we use
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to retrieve the dam operating policies under filling and steady-state conditions (Sect.
2.4.3). Finally, we leverage these results to analyze the effect of reservoir operations on
downstream discharge (Sect. 2.4.4).

2.4.1 E-A, A-S, and E-S curves

The E–A curves of Nuozhadu and Xiaowan reservoirs are illustrated in Fig. 2.7 (pan-
els a and d), where the blue circles represent the data points derived from the DEM,
and the light blue lines are the fifth-degree polynomials fitted to them. Note that both
curves correctly intersect the point identified by maximum water level and maximum
water surface area, retrieved from Do et al. (2020). A similar evaluation is carried out
for the A–S and E–S curves (Fig. 2.7, panels b, c, e, f), but this time using design speci-
fications on full storage (A–S and E–S curves) and dead storage (E–S curves).

FIGURE 2.7: E–A, A–S, and E–S curves of Nuozhadu (a–c) and Xiaowan
(d–f) reservoirs. The curves are represented by light blue lines, which are
fitted to the data points (blue circles) derived from the DEM data. Note
that the curves intersect the points identified by maximum water level,
maximum water surface area, and full-storage volume (dashed lines) as
well as those identified by dead water level and dead-storage volume
(dotted lines). The cyan diamonds reported in panels (a) and (d) cor-
respond to observations of water level and surface area obtained from

altimetry data and Landsat imagery.
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We carry out an additional validation of the E–A curves by comparing them against
observations of water level and surface area obtained from radar altimetry data and
Landsat imagery. These observations, illustrated in Fig. 2.7a and d by cyan diamonds,
follow the curves identified through the DEM closely. Naturally, the cyan points are
primarily concentrated between the dead and maximum water levels, which denote
the normal range of operating conditions. As we shall see later, points below the dead
water level correspond to the dam filling period.

The E–A, A–S, and E–S curves of the remaining eight reservoirs are reported in Figs.
A.9 and A.10. Apart from the curves of Jinghong and Huangdeng, which are evalu-
ated using the radar altimetry water level, the curves of the other reservoirs can only
be evaluated by comparing them against the design specifications reported by Do et al.
(2020). Such an evaluation is only partially successful, since we did not find a perfect
match between curves and design specifications for Jinghong, Gongguoqiao, Miaowei,
Dahuaqiao, and Wunonglong reservoirs. Considering that the procedure used to esti-
mate the curves has been successfully employed in several studies (Bonnema, Sikder,
et al., 2016; Bonnema and F. Hossain, 2017; S. Zhang and Huilin Gao, 2020), we suspect
that the reason behind the mismatch may lie with the information on dam design spec-
ifications available to the public. In turn, this reinforces the need for research aimed to
retrieve data on large-scale infrastructure in transboundary river basins. We also note
that this source of uncertainty does not severely affect our study, since those five reser-
voirs account for a small fraction of the total system’s storage (2.36 %, 0.74 %, 1.55 %,
0.69 %, and 0.64 %, respectively).

2.4.2 Water surface area

Recall that the WSA estimation algorithm builds on the idea of using cloudless images
to create the expanded mask and zone mask, which are then employed to correct the
classification of water pixels in images affected by clouds and other disturbances. In
our case, such improvement is needed for 56 % of the 3004 Landsat images available for
our study period (the number of usable images increases from 26 % to 82 %). As one
might imagine, the classification correction is particularly important during the wet
season, when cloud cover is more frequent—the number of usable images increases by
54 % of 1770 images (from 30 % to 84 %) in the dry season and 58 % of 1234 images
(from 21 % to 79 %) in the wet season. The performance of the algorithm for each reser-
voir is summarized in Table A.4.

The WSA time series of Nuozhadu and Xiaowan reservoirs are reported in Fig. 2.8.
The first result to note is the stark change in the WSA values before (light blue points)
and after (cyan points) the classification improvement. The time series of corrected
WSA values also starts to reveal the reservoirs’ operating patterns: the sharp increase
beginning in 2012 (Nuozhadu) and 2009 (Xiaowan) denotes the starting point of the
reservoir filling period, while the large, annual, fluctuations suggest the presence of a
broad range of operating conditions – the maximum surface area is reached only at the
end of the wet season, while the rest of the year seems to be used to fill in and empty the
reservoirs. In Sect. 2.4.3, wwill see how such variability translates into storage patterns.
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FIGURE 2.8: Water surface area of Nuozhadu (a) and Xiaowan (b) reser-
voirs. Note the drastic difference in WSA values before (light blue
points) and after (cyan points) the classification improvement. The cor-
rected values of WSA are well in agreement with those obtained through

altimetry water level data and E–A curves (dark blue points).

To evaluate the results obtained with Landsat imagery, we leverage the radar altime-
try water level data and E–A curves to obtain two independent WSA time series. As
shown in Fig. 2.8, both modeling approaches provide very similar results. The same
outcome can be seen in the WSA time series of Huangdeng and Jinghong reservoirs
(see Fig. A.11). We also provide a quantitative comparison of Landsat-derived and
altimetry-converted WSA for all four reservoirs mentioned above (see Table A.5). With
this additional analysis we therefore serve two purposes: scrutinize the WSA values for
the main reservoirs and empirically validate the approach based on Landsat imagery,
the only one available for the remaining reservoirs.

2.4.3 Reservoir storage

A history of reservoir storage variations

Using the information on reservoir curves and water surface area described above, we
estimate the storage time series of each reservoir as well as their aggregated value (Fig.
2.9). Note that the number of usable images per month is not the same. To have an
evenly spaced time series of storage, we choose one WSA value (maximum value) for
each month to infer the reservoir storage. The latter (dark blue line) portrays a history
of rapid transitions, characterized by two major tipping points: the commission of Xi-
aowan and Nuozhadu reservoirs. After the commission of Xiaowan, we note a steady
increase in the total storage (see the period between mid-2009 and 2012), an increase
that becomes even more pronounced after the commission of Nuozhadu, in 2012. It is
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indeed only after the filling of both reservoirs is completed, in 2014, that the total stor-
age time series begins to exhibit a more cyclostationary behavior—the reservoir system
is filled during the monsoon season and emptied thereafter. The construction of a few
additional dams during the period 2016–2018 does not seem to dramatically affect this
pattern. In fact, the remaining eight reservoirs appear to maintain a more constant
storage (Fig. A.12).

FIGURE 2.9: Storage variations of the Lancang reservoir system. The
blue shaded area represents the range of variability of the total system’s
storage (between dead- and full-storage volume), while the actual stor-
age dynamics are represented by the dark blue line. The storage dy-
namics of Nuozhadu, Xiaowan, and the remaining eight reservoirs are
illustrated by the yellow, green, and blue lines. The vertical dashed lines
denote the year of commission of each reservoir. Note that Manwan and
Dachaoshan began operations in 1992 and 2003, respectively. We pro-

vide the storage time series of each individual reservoir in Fig. A.12.

Two key additional elements are revealed when comparing the total storage dynamics
against its potential range of variability, that is, the space between the aggregated dead
and full storage (blue shaded area). First, the operators do not seem to use the entire
storage at their disposal—dead- and full-storage levels were never reached through-
out the study period. A plausible explanation for this management strategy may be
sought in the need of avoiding further disputes with downstream countries (Eyler and
Weatherby, 2020) or alleviating hydropower curtailment (B. Liu et al., 2018). Second,
the reservoir system was used at only half of its capacity in 2015–2016 and 2019–2020,
with Nuozhadu reservoir playing a key role (yellow line). As we shall see in Sect. 2.4.4,
this may be the result of persistent dry conditions (Yuanhe Yu et al., 2020; Ding and
Hui Gao, 2020), rather than a response to the aforementioned socio-technical drivers.

Filling strategies and operating rules

In Fig. 2.10, we focus on the filling strategies and operating rules of Nuozhadu and Xi-
aowan: panels (a) and (b) show the values of θ (the parameter expressing the fraction
of inflow volume retained by the reservoir), while panels (c) and (d) illustrate storage
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volume (dark blue line), simulated inflow (green line), and storage change (light blue
line)—that is, St − St−1, expressing the rate with which the reservoir is filled. The fig-
ure suggests that the operators adopted similar filling strategies: both reservoirs were
filled in about 2 years (regardless of the different capacities), with the first wet season
used to meet the dead storage and the second wet season used to double the storage
volume. Interestingly, results indicate that the annual value of θ was kept constant dur-
ing the filling period. For Nuozhadu, the operators retained 23 % of the annual inflow
volume (for both years); for Xiaowan, that value was kept to 17 % and 15 %. Note
that these are extremely large values: retaining 23 % of the annual inflow volume to
Nuozhadu means storing roughly 9880 Mm3, ∼12 % of the average annual discharge
at Chiang Saen. The filling strategy of the remaining reservoirs is different: because
they have smaller storage capacity—relative to inflow—they are filled in a few months
(Fig. A.12).

By looking at the storage data of Nuozhadu and Xiaowan during normal operating
conditions (i.e., once the filling is completed), we can get a few additional insights
about the current management strategies (Fig. 2.10e, f). The first thing to note is the
emergence of the seasonal patterns mentioned in the previous section; reservoirs are
emptied during the pre-monsoon season and filled in thereafter. Second, the envelope
of variability is rather broad, meaning that operators can deviate from the long-term
pattern represented by the bolded red line. Such deviations are common throughout
the entire Mekong Basin (see Bonnema and F. Hossain (2017) and Bonnema and F. Hos-
sain (2019)) and are caused by inter-annual variability in discharge triggered by oceanic
drivers (Hung T T Nguyen et al., 2020). Finally, the analysis confirms that Nuozhadu
and Xiaowan have not yet been used at their full capacity. However, this is enough to
keep the storage of the other reservoirs within a narrower range (Fig. A.13).

2.4.4 Impacts of reservoir operations on downstream discharge

Having established how the reservoirs in the Lancang River basin have been filled in
and operated, we can finally explain their time-varying influence on the discharge mea-
sured at Chiang Saen (Sect. 2.2.1). The graphical analysis of total storage and discharge
(Fig. 2.11c) highlights the stark changes in the flow regime in response to the increase
in upstream storage. The flow regime changed drastically in late 2013, when the fill-
ing of Xiaowan and Nuozhadu was completed. By discharging water during the dry
season and retaining it in the wet season, the hydropower dams largely increase low
flows and decrease high flows (Table A.6). For example, the mean of the annual peak
discharge decreased from 11 157 (1990–2008) to 6186 m3 s−1 (2013-2020) (-45 %) while
the mean of the annual lowest discharge grew from 638 to 1003 m3 s−1 (+57 %). Similar
figures are found for other statistics (Table A.6). We can also note a macroscopic change
in the seasonal discharge pattern, from ample annual fluctuations to more rapid flow
changes. All these observations are confirmed by the wavelet analysis reported in Fig.
A.14.

As shown in Fig. 2.11b, the degree of flow alteration at Chiang Saen caused by the
Lancang’s dams increased significantly over time with three distinct stages: the first
stage (before Xiaowan reservoir began operating), the middle stage, and the last stage
(after Nuozhadu reservoir began operating). That means the range of variability of I1
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FIGURE 2.10: Filling strategies (a, b, c, d) and rule curves (e, f) of
Nuozhadu (a, c, e) and Xiaowan (b, d, f) reservoirs. Panels (a) and (b)
show the values of θ. In panels (c) and (d), the storage volume (dark
blue line) is derived from DEM and Landsat data, while the inflow to the
reservoir (green line) is calculated with the VIC-Res hydrological model.
The storage change (light blue line) is defined as the difference in storage
volume between two consecutive months. In panels (e) and (f), each line
with circle makers illustrates the storage volume of a given year. The
bolded red lines represent the average monthly storage volume, consid-
ered representative of the rule curves. All data visualized here have a

monthly resolution.

(in black color) and I2 (in red color) increased over time: [0, 0.04] and [-0.10, 0] in the
first stage, [0, 0.20] and [-0.44, 0] in the second stage, and finally, [0, 0.50] and [-0.91, 0]
in the last stage. With the number of reservoirs increasing rapidly in the last decade,
the downstream discharge became increasingly controlled by dam operations.

By bringing the monthly precipitation anomalies (for the Lancang River basin) into the
overall picture (Fig. 2.11a), we can better understand how dam operations partially
contributed to downstream droughts and pluvials. A case in point is the drought in
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FIGURE 2.11: Impacts of reservoir operations on downstream discharge.
Panel (a) shows the monthly precipitation anomaly in the Lancang River
basin, calculated from the CHIRPS-2.0 dataset. Panel (b) represents the
two indicators of hydrological alteration on discharge at Chiang Saen:
I1—the fraction of the natural flow retained in the reservoir system for
each month in which the system is storing water—in black color, and
I2—the fraction of the actual flow released from the reservoir system
for each month in which the system is releasing water—in red color. In
panel (c), the bolded dark blue line represents the total storage of the
reservoir system, while the cyan line represents the observed discharge

at Chiang Saen.

the period 2019–2020. The monthly precipitation anomalies show that, in the wet sea-
son of 2019, the Lancang River basin received less precipitation, especially in May and
June (around 50 mm less than the average for those months). However, the values of
I1 indicate that the reservoir system kept retaining part of the inflow during the central
months of the year (up to about 46 % in October). Because of such a combination of
meteorological drought and dam operating strategies, the downstream area underwent
a critical dry period, with Chiang Saen gauging station recording extremely low flows
during the summer months (MRC, 2020b). The release of water during the subsequent
dry season only partially alleviated the effect of the ongoing drought, since the nega-
tive precipitation anomaly persisted until mid-2020. Importantly, the 2019–2020 data
suggest that the dam operating strategy was not largely affected by the meteorologi-
cal conditions: the Lancang dams currently store about 46 % of the estimated natural
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flow during the wet season (regardless of the monsoon’s intensity) and then discharge
it during the dry one, controlling up to 89 % of the dry-season flow—a pattern that has
emerged since Xiaowan and Nuozhadu became fully operational. These results also
highlight the importance of emergency releases from the upstream reservoirs, such as
those that were implemented in 2016 (Tiezzi, 2016; Hecht et al., 2019). In regard to those
emergency releases, it should be noted that the 2016 drought had much smaller magni-
tude than the 2019–2020 one and that the drought occurred during the first half of the
year, when the reservoir system was releasing water following its normal operations.
In sum, the availability of (inferred) storage data can help us put droughts, emergency
releases, and pluvials into a broader perspective. Yet, such analyses should ideally be
complemented by more significant data-sharing efforts among all riparian countries, a
point that was recently reinforced by Keovilignavong, T. H. Nguyen, and Hirsch, 2021.

2.5 Discussion

Our study produced a monthly storage time series for each of the 10 large reservoirs
built in the Lancang River basin during the past decades. These time series describe the
evolution of a massive dam cascade system and highlight the pivotal role played by Xi-
aowan and Nuozhadu reservoirs. Taken together, the two reservoirs can make up to
∼ 85 % of the total system’s storage in the Lancang, therefore largely controlling water
availability in Northern Thailand and Laos. Bespoke information on their operating
rules—ideally combined with real-time storage monitoring—is of paramount impor-
tance for many downstream socio-economic sectors. Consider, for instance, the Laotian
hydropower industry, the largest regional exporter of electricity: since the construction
of Xayaburi dam (1285 MW) on the main stem of the Mekong, part of the national hy-
dropower production has depended on the state of the Lancang’s reservoirs. Detailed
information on their storage and operating rules could therefore be incorporated into
Laos’ energy system models (Chowdhury, Dang, Bagchi, et al., 2020), so as to address
the asymmetric relation between China and Laos. Moving downstream, another sec-
tor that could benefit from our study is the Mekong’s wetlands, a major biodiversity
hotspot that is home to a multi-billion-dollar fishing industry (Arias et al., 2014; Dang,
Cochrane, et al., 2016). Again, information on the state of the Lancang’s reservoirs
could help inform the operations of the many downstream dams, thereby helping im-
plement release strategies that are less harmful for the environment(Sabo et al., 2017).
In sum, the inferred rule curves could be used to predict outflow from the Lancang’s
reservoir system and adapt the operations of downstream dams.

Our analysis also provides a detailed description of the filling strategy of Nuozhadu
and Xiaowan. We now know that both reservoirs reached steady-state operations in
about 2 years by retaining from 15 % to 23 % of the annual inflow volume. This in-
formation is necessary to explain past anomalies in downstream water discharge and,
most important, to prepare for future infrastructural changes in the Lancang’s dam cas-
cade system. China is already building a new dam (Tuoba: 1039 Mm3) and planning
the construction of 10 additional ones (MRC, 2020a). All these dams are rather large
(e.g., Ru Mei: 13 385 Mm3, Ban Da: 12 902 Mm3, Gu Xue: 10 127 Mm3), and taken to-
gether, they have a total storage capacity of about 64 950 Mm3 (Schmitt et al., 2019). If
the same filling strategies were to be implemented again, downstream countries should
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expect a temporary, yet substantial, decrease of water availability but could also design
adaptation and emergency plans. For example, Laos or Cambodia could decide to tem-
porarily change their water management strategies when a new dam becomes opera-
tional in the Lancang. Naturally, information on the past filling strategies could also be
used when negotiating the filling of new dams—as for the case of the Grand Ethiopian
Renaissance Dam (Y. Zhang, Erkyihum, and Block, 2016; Basheer et al., 2020)—a more
desirable and cooperative policy that does not seem to be on the horizon.

In many ungauged or disputed river basins, like the Mekong, the characterization of
hydrological alterations is typically based on “static” indicators that relate the storage
capacity to the average annual discharge volume (Günther Grill, Dallaire, et al., 2014;
Günther Grill, Lehner, et al., 2015). By coupling actual storage time series with dis-
charge data, we can go beyond this first, fundamental, characterization and provide
a gateway for a more nuanced understanding of how, and when, reservoir operations
affect downstream hydrological processes (Bonnema and F. Hossain, 2017). In that
regard, our results for the Lancang indicate that the fraction of natural flow actively
controlled by dams (in Northern Thailand and Laos) changes on a monthly basis: reser-
voirs hold up to ∼ 50 % of the natural flow during the wet season and control almost 89
% of the dry season flow coming out of Lancang. Interestingly, we also found that this
periodic pattern is not much affected by the hydrometeorological conditions—like the
2019-2020 drought—partially explaining the complaints and fears of the downstream
countries (Eyler and Weatherby, 2020).

From a more technical perspective, another research area that might be influenced by
our results is the development of large-scale hydrological models for the Mekong Basin.
Hydrologists are indeed increasingly interested in the representation of water reservoir
storage and operations, a modeling problem that has long relied on generic reservoir
release schemes (Hanasaki, Kanae, and Oki, 2006). Recent research has shown that the
nuances of operations at individual dams are better captured by hydrological models
when building on high-resolution data available for each dam (Turner, Doering, and
Voisin, 2020). In this regard, we believe our storage and water level time series provide
an opportunity for testing and improving the many hydrological models developed
for the Mekong Basin (Hoang et al., 2019; Yang Yu et al., 2019; Dang, Chowdhury, and
Galelli, 2020; Yun et al., 2020; Shin et al., 2020; Do et al., 2020). A complementary
research direction is the creation of additional datasets for other key variables, such
as water temperature or suspended sediment concentrations, which can also be ob-
served, or inferred, from satellite observations (Beveridge, F. Hossain, and Bonnema,
2020; Bonnema, F. Hossain, et al., 2020; Ahmad et al., 2021).

Like any other numerical modeling study, this work also builds on a few modeling as-
sumptions that are worth being discussed. First, the storage time series we developed
have a monthly resolution. As shown in Fig. A.1, this resolution is sufficient to study
reservoir storage dynamics in the Lancang—as well as their impacts on downstream
discharge—but it is undoubtedly that the availability of weekly or daily data would
further expand the scope of research on transboundary basins. Daily data could be
used, for instance, to study the nuances of emergency releases or sudden changes in
river discharge. Second, Landsat images provide the best compromise of spatiotempo-
ral resolution and time span, but they do require an image enhancement process. The
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development of WSA algorithms is an area warranting further research, since study-
ing dams built in the past decades must almost necessarily build on Landsat images.
This is a nonnegligible factor when considering that many dams have been recently
constructed in the tropics, where cloud cover is common during the rain season. Third,
the analysis of reservoir filling strategies requires the use of modeled discharge, a prob-
lem that could be avoided if riparian countries shared river discharge data. The model
validation suggests that the characterization of the filling strategies is not affected by
the use of a model, which, importantly, is directly driven by inferred storage data. As
mentioned, above the integration of such data with process-based hydrological models
is a very active research area that will hopefully lead to even more accurate models.

Looking forward, we should aim at repeating studies like this one at the scale of the
entire river basin. Doing that would create a pathway to a robust attribution analysis
of the recent droughts that have affected the Mekong countries. It should be noted that
such analysis is probably not yet within our reach: we know how runoff generation
is spatially distributed (Shin et al., 2020), and we are gathering information on the
operations of many reservoirs (Biswas, F. Hossain, Bonnema, Lee, et al., 2021), but
we still have limited data on other anthropogenic interventions that arguably affect the
overall water balance, such as irrigation activities in the western part of the basin. In
turn, this reiterates the need for high-resolution data spanning across countries and
socio-economic sectors.

2.6 Conclusions

In just a few decades, the Mekong River basin has undergone a rapid infrastructure
development that has fostered economic growth but also damaged the environment
and challenged the relation between riparian countries. A change in this status quo
means conceiving cooperative water–energy policies that span across countries and
socio-economic sectors (Schmitt et al., 2019; Siala et al., 2021). Aside from the political
will, an important piece of the puzzle is the availability of open-source datasets that
describe how big infrastructures have been operated. Since agreements on data shar-
ing only provide piecemeal information (Johnson, 2020), the use of satellite imagery
appears to be the only way to create unbiased observations available to the research
community and local stakeholders. In this regard, our work complements the exist-
ing efforts for the region, bringing us one step closer to a complete understanding
of China’s management strategies for the Lancang’s dams. Importantly, the lessons
learned here could be readily applied to other transboundary river basins, where the
lack of information on existing and planned dams is a major obstacle to open science
and institutionalized cooperation.
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Chapter 3

Calibrating macro-scale
hydrological models in poorly
gauged and heavily regulated basins

Publication

Vu, D. T., Dang, T. D., Galelli, S., & Hossain, F. (2022). Satellite observations reveal
13 years of reservoir filling strategies, operating rules, and hydrological alterations in
the Upper Mekong River basin. Hydrology and Earth System Sciences 26(9), 2345–2364.
https://doi.org/10.5194/hess-26-2345-2022.

3.1 Introduction

The past few years have witnessed an increase in the implementation of hydrological
models to extensive domains, from large basins to the global scale (Döll et al., 2008;
I. Haddeland et al., 2014; Nazemi and Wheater, 2015a; Nazemi and Wheater, 2015b;
Bierkens, 2015). Such increase is driven by a variety of downstream applications, such
as quantifying the potential impact of climate change on water resources (Vliet et al.,
2016), characterizing the relationship between climate, water, and energy (Chowdhury,
Dang, Hung T. T. Nguyen, et al., 2021), or predicting extreme events over multiple time
scales (Vegad and Mishra, 2022). A fundamental point to consider is that the success-
ful implementation of macro-scale models is often challenged by two problems. First,
we often lack long and reliable time series of in situ observations of key hydrological
processes, e.g., evapotranspiration, runoff, discharge (Hrachowitz et al., 2013). Second,
there is also a lack of information and data on how hydraulic infrastructures are oper-
ated; a matter that we have only recently started to address (Vu et al., 2022; Steyaert
et al., 2022). This is another important issue, since hydraulic infrastructures, such as
dams, are ubiquitous and can heavily affect hydrological processes (Ingjerd Hadde-
land, Skaugen, and Lettenmaier, 2006; G. Grill et al., 2019). Importantly, both problems
are exacerbated in transboundary river basins, where access to data is particularly dif-
ficult. This modelling backdrop creates a wealth of pitfalls for model calibration, with
potential unintended consequences on the downstream applications of macro-scale hy-
drological models.

Looking at river discharge—the variable with respect to which macro-scale hydro-
logical models are often calibrated—one easily notes that model calibration in poorly
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gauged basins mostly relies on making the best of the available gauged data. In other
words, the model calibration process is carried out by leveraging discharge data where
they are available (e.g., Shin et al. (2020), Galelli et al. (2022), and Chuphal and Mishra
(2023)). Naturally, doing so potentially leads to inadequate model calibration for the
ungauged regions of a large basin. Other studies have explicitly dealt with the lack of
discharge time series by inferring them from satellite data. As shown in Fig. 3.1, these
studies can be categorized into two groups. One builds on the idea of first using in-situ
data to develop a hydraulic model (accounting for the relationship between discharge
and water level and/or river width) for estimating river discharge, and then using
these estimates to carry out the model calibration (panel a) (e.g., Khan et al. (2012) and
Tarpanelli et al. (2022)). Yet, this approach may still partially rely on in-situ data; hence,
the solution for calibrating hydrological models in poorly gauged basins is often lim-
ited to the second approach (panel b), in which both models are calibrated concurrently
(e.g., G. Liu et al. (2015), Sun et al. (2018), and Huang et al. (2020)). Here, a potential
pitfall stands in the fact that estimation errors characterizing the first part (discharge
estimation) may in turn affect the hydrological model, and vice versa. In other words,
co-estimating the parameters of the hydraulic and hydrological models may bias their
calibration, ultimately compromising their reliability. Considering the increasing num-
ber of remote-sensed discharge observations that could support such analyses (Birkin-
shaw et al., 2010; Papa et al., 2012; Biancamaria, Lettenmaier, and Pavelsky, 2016), it is
paramount to explore the pitfalls that could affect the model calibration process.

In this study, we thus develop and demonstrate a workflow to investigate three chief
questions: (1) Does the joint calibration of hydraulic and hydrological models create
any reliability issues? (2) In particular, to what extent is the hydrological model ac-
curacy influenced by the parameterization of the hydraulic model? (3) How can we
make the calibration exercise less prone to potential pitfalls? We answer these ques-
tions for an implementation of the VIC-Res hydrological model for the Upper Mekong
River Basin (Dang, Chowdhury, and Galelli, 2020), an area characterized by the un-
availability of discharge observations as well as major hydrological alterations caused
by dam development (Hecht et al., 2019). To generate discharge time series for the cal-
ibration of VIC-Res, we use satellite altimetry data and a hydraulic model (based on
the Manning’s equation) that is also identified from satellite data. In our framework,
we first use Global Sensitivity Analysis to demonstrate the existence of a pronounced
co-dependence between the parameterization of the hydraulic model and the mod-
elling accuracy of VIC-Res. To break this co-dependence, we leverage the results of
the sensitivity analysis to constrain the parameterization of the hydraulic model and
thus safely inform the calibration of VIC-Res, which is ultimately carried out using a
multi-objective optimization approach.

3.2 Study site, model domain, and gauging stations

In this section, we provide information on our study site, the spatial domain of the hy-
drological model, and the availability of observed and remote-sensed discharge data.
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FIGURE 3.1: Two approaches to the calibration of macro-scale hydro-
logical models with discharge data retrieved from satellite data. With
the sequential calibration, the discharge data are first estimated using a
hydraulic model linking water level (H) and/or river width (W ) to dis-
charge (Q), and then used to calibrate the hydrological model (a). With

the second approach, both models are calibrated simultaneously (b).

3.2.1 The Lancang-Mekong River Basin

Spanning an area of about 795 000 km2, the Mekong River Basin is the largest trans-
boundary basin in Southeast Asia. The river is 4350 km long and stretches in a northwest-
southeast direction from the Tibetan Plateau (approximately 5200 m a.s.l.) to the East
Vietnam Sea (Fig. 3.2a). The basin can be roughly divided into two parts, namely the
Upper Mekong (also known as the Lancang, in China) and the Lower Mekong, which
is shared by five countries (Myanmar, Thailand, Laos, Cambodia, and Vietnam).

The Lancang accounts for 45 % of the river length, 21 % of the catchment area, and 16 %
of the annual discharge of the entire Mekong (MRC, 2009). The complex topography of
the Lancang Basin (high mountains and low valleys) contributes to the uneven spatial
distribution of precipitation, which ranges from 600 mm/year in the Tibetan Plateau to
1700 mm/year in the mountains of Yunnan. Meanwhile, the monsoonal climate causes
an uneven temporal distribution of precipitation, with 70 %-80 % of precipitation ar-
riving in the wet season (June to November) (Yun et al., 2020).
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FIGURE 3.2: The Mekong River Basin (a) and the Lancang River Basin
(b). In both panels, we illustrate the location of the gauging station (Chi-
ang Saen), virtual gauging station, and ten large hydropower dams on
the main stem of the Lancang with a volume larger than 100 million m3

each, all included in the hydrological model. All dams are operational
as of December 2020. The light green area is the spatial domain of the

hydrological model.

Because of the advantageous topography and abundant water availability, the Lancang
River Basin has become a hotspot for hydropower development. Indeed, the Lancang
dam system—developed during the past three decades—consists of more than 35 hy-
dropower dams (WLE Mekong, n.d.), including 10 large dams on the main stem with
a volume larger than 100 MCM (Million Cubic Meters) each (see their location in Fig.
3.2b and specifications in Table A.1). The system has a total capacity of more than 42
000 MCM and can control up to 55 % of the annual flow to Northern Thailand and
Laos. The Lancang River Basin is an excellent example of a transboundary and heavily
regulated river with limited information on dam operations: initiatives on the sharing
of year-round water data are still in their infancy (Johnson, 2020), so the only data avail-
able to the public are those retrieved from satellite data (e.g., Bonnema and F. Hossain
(2017), Biswas, F. Hossain, Bonnema, Lee, et al. (2021), and Vu et al. (2022)). Time series
of river discharge measured within China’s political boundaries are not available.
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3.2.2 Model domain and study period

The spatial domain of our hydrological model is the light green area illustrated in Fig.
3.2. This domain corresponds to the Lancang Basin (namely the area falling within
China’s political boundaries), plus an additional area spanning across Myanmar, Thai-
land, and Laos. Note that the domain of hydrological models focusing on the Lancang
is typically ‘closed’ at Chiang Saen (e.g., Dang, Chowdhury, and Galelli (2020)), where
the first gauging station with publicly-available data is located. Here, we slightly ex-
tend the domain so as to account for the location of a virtual gauging station (see Sect.
3.2.3). The simulation period goes from 2009 to 2018 and thus comprises the main
development of the Lancang reservoir system, including the filling period of the two
largest reservoirs, Xiaowan and Nuozhadu, which account for ∼85 % of the total sys-
tem’s storage (Vu et al., 2022).

3.2.3 Gauging stations

As mentioned above, the first gauging station with publicly-available data is Chiang
Saen, located in Northern Thailand, about 350 km from Jinghong dam (Fig. 3.3). Daily
water level and discharge at the station have been collected since 1990 by the Mekong
River Commission (MCR) and are available on its online data portal (https://portal.
mrcmekong.org/). Since we developed a methodology for calibrating models in un-
gauged river basins, these data are used only for model validation.

To infer the discharge time series needed for model calibration, we sought for loca-
tions around Chiang Saen where altimetry water level data are available (Fig. 3.3).
From these data, one can try to infer the river discharge. These data are collected by
multiple satellites (i.e., EnviSat, Jason-2/3, and Sentinel-3A) and are available in the
Database for Hydrological Time Series of Inland Waters (DAHITI, https://dahiti.
dgfi.tum.de/). In this study, we choose the location 1422 (Jason-2/3)—about 280
km downstream of Chiang Saen—as our virtual gauging station (virtual station here-
after). This is because of two reasons. First, the temporal coverage of data at the cho-
sen location covers our study period (see the bottom panel in Fig. 3.3). Second, the
temporal resolution of Jason-2/3 (10 days) is finer than the one of EnviSat (35 days)
and Sentinel-3A (27 days). It is also worth noting that another database, HydroWeb
(https://hydroweb.theia-land.fr/), provides (Sentinel-3A/B) altimetry water
level data for a number of locations in our study site. However, these data have the
same temporal resolution and coverage of the Sentinel-3A data provided by DAHITI,
which makes them unsuitable for our study.

3.3 Methodology

The numerical framework developed for our study consists of two main modelling
components, illustrated in Fig. 3.4. We model the hydrological processes within the
Lancang Basin with VIC-Res, whose routing module includes an explicit representa-
tion of reservoir operations (Sect. 3.3.1). The discharge data at the virtual station used
to calibrate VIC-Res are generated by a second model, namely a rating curve based
on the Manning’s equation (Sect. 3.3.2). In our approach, we first use Global Sensi-
tivity Analysis to explore the relationship between the parameterization of the rating

https://portal.mrcmekong.org/
https://portal.mrcmekong.org/
https://dahiti.dgfi.tum.de/
https://dahiti.dgfi.tum.de/
https://hydroweb.theia-land.fr/
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FIGURE 3.3: Gauging stations in our study site. The upper panel il-
lustrates the location of Chiang Saen and the virtual station. The map
also shows the locations in which altimetry water level data are avail-
able. The data are collected by multiple satellites—namely EnviSat (light
blue triangle), Jason-2/3 (dark blue triangle), and Sentinel-3A (white
triangle)—and are processed by DAHITI. The number above each tri-
angle corresponds to the station ID in DAHITI. The bottom panel illus-
trates the temporal coverage of data in each location, constrained by the
operational period of the satellites. Only data at the location 1422 (Jason-

2/3) have a temporal coverage covering our study period.

curve and the accuracy of VIC-Res (Section 3.3.3). Then, we use the knowledge gained
through the sensitivity analysis to calibrate and validate VIC-Res.
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FIGURE 3.4: Flowchart illustrating our numerical framework. The VIC-
Res model (green boxes) includes a rainfall-runoff and a routing module.
The latter explicitly simulates reservoir operations using data retrieved
from satellite observations. The discharge data used to calibrate VIC-Res
are estimated from altimetry water levels through a rating curve, which
is based on Manning’s equation and developed using multiple satellite
data (Landsat images, altimetry water level, and DEM). All remote sens-
ing items are represented by blue boxes. The relationship between the
parameterization of the Manning’s equation (dark blue box) and the per-
formance of VIC-Res is assessed and quantified via Global Sensitivity
Analysis (a). Based on the results of the sensitivity analysis, we then set
a value of the Manning’s coefficient and calibrate the parameters of VIC-

Res using the ε-NSGA-II algorithm (b).
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3.3.1 Modelling hydrological processes and reservoir operations

Hydrological model

The hydrological model used in this study is VIC-Res (Dang, Chowdhury, and Galelli,
2020), a novel variant of VIC, which is a macro-scale, semi-distributed hydrological
model developed by the University of Washington (Liang et al., 2014). Both VIC and
VIC-Res consist of two modules, namely a rainfall-runoff and a routing module (Fig.
3.4). In the rainfall-runoff module, the study region is divided into computational cells
with a customizable cell size (0.0625◦ in this study). For each cell, the key hydrologi-
cal processes (evapotranspiration, infiltration, baseflow, and runoff) are calculated as a
function of various inputs, including climate forcing (e.g., precipitation, temperature,
wind speed), land cover, Leaf Area Index, and albedo. In the routing module, sim-
ulated baseflow and runoff produced by the first module are routed throughout the
river network, with the routing process modelled by the linearized Saint-Venant equa-
tion (Lohmann, Nolte-Holube, and Raschke, 1996; Lohmann, Raschke, et al., 1998).

Improving on the VIC model, VIC-Res includes an explicit representation of water
reservoir operations. For each reservoir in the study region, the model solves the stor-
age mass balance and calculates the reservoir release. Specifically, we leverage infor-
mation on modeled inflow and estimated storage (see Sect. 3.3.1). These two variables
are combined with information on evaporation (simulated using the estimated water
surface area and evaporation rates calculated with the Penman equation) to invert the
mass balance equation, yielding the reservoir release. Additional details on VIC-Res,
including alternative approaches to reservoir operations, are described in Dang, Vu,
et al. (2020).

In our VIC-Res model, we calibrate 7 soil parameters and 2 routing parameters (see
Table 3.1). The soil parameters controlling the rainfall-runoff process are b, Dmax, DS ,
WS , c, d1, and d2. To be more specific, the parameter b is the VIC curve parameter,
which determines the infiltration capacity and surface runoff amount generated by
each cell (Ren-Jun, 1992; Todini, 1996). In particular, higher values of b produce less
infiltration and more surface runoff. Dmax, DS , WS , and c are the baseflow parame-
ters, which influence the shape of the baseflow curve (Franchini and Pacciani, 1991).
Specifically, Dmax is the maximum velocity of baseflow, DS is the fraction of Dmax at
which non-linear baseflow begins, while WS is the fraction of maximum soil moisture
at which non-linear baseflow begins. The parameter c is the exponent used in the base-
flow curve. d1 and d2 are the thickness of the two soil layers. Thicker layers increase
the water storage capacity, and hence increase the evaporation losses. Thicker soil lay-
ers also delay the seasonal peak flow. The routing parameters are flow velocity (v) and
flow diffusion (df ).

The data used in our VIC-Res model consist of climate forcing data, land use and cover,
Leaf Area Index (LAI), albedo, flow direction, and time series of reservoir storage vol-
ume. Climate forcing data include daily precipitation data retrieved from the CHIRPS-
2.0 dataset, daily maximum and minimum temperature, and wind speed (retrieved
from the ERA5 dataset). We collect land use and cover data from the Global Land
Cover Characterization (GLCC) dataset, and soil data from the Harmonized World
Soil Database (HWSD). Monthly LAI and albedo are derived from the Terra MODIS
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TABLE 3.1: Soil parameters controlling the rainfall-runoff process and
routing parameters in VIC-Res. The last column shows the range of each
parameter considered in this study, also adopted in previous studies
(e.g., Dan et al. (2012), Park and Markus (2014), Xue et al. (2015), and

Wi et al. (2017)).

Parameter Unit Description Range

b - Variable Infiltration Capacity curve parameter (0, 0.9]
Dmax mm/d Maximum velocity of baseflow (0, 30]
DS - Fraction of Dmax where non-linear baseflow occurs (0, 1)

Soil WS -
Fraction of maximum soil moisture where
non-linear baseflow occurs

(0, 1)

c - Exponent used in baseflow curve [1, 3]
d1 m Thickness of the upper soil layer [0.05, 0.25]
d2 m Thickness of the lower soil layer [0.3, 1.5]

Routing v m/s Flow velocity [0.5, 5]
df m2/s Flow diffusion [200, 4000]

satellite images, while the flow direction is calculated from the SRTM-DEM data. The
monthly time series of reservoir storage volume are reconstructed from satellite data,
as explained next.

Reservoir operations

To capture the actual operations of reservoirs, we use monthly time series of reservoir
storage volume reconstructed from satellite data by Vu et al., 2022. Specifically, the
time series of reservoir storage volume are obtained from Landsat images (Landsat 5
available from 1984 to 2013, Landsat 7 from 1999 to 2022, and Landsat 8 from 2013
to present) and a digital elevation model (SRTM-DEM). The time series are created
through three steps. First, the relationship between water surface area and storage vol-
ume (the area–storage curve) for each reservoir is calculated from DEM data. Then, the
reservoir water surface area is estimated from Landsat images by a water surface area
estimation algorithm that removes the effects of clouds and other disturbances (Huilin
Gao, C. Birkett, and Lettenmaier, 2012; S. Zhang, Huilin Gao, and Naz, 2014). Finally,
the storage volume is inferred from the water surface area through the area–storage
curve. The results obtained from Landsat images are validated with altimetry water
levels (Jason 2 available from 2008 to 2016, Jason 3 from 2016 to present, and Sentinel
3 from 2016 to present) for the reservoirs where altimetry water levels are available.
Since the VIC-Res model adopts a daily simulation time step, the monthly time series
of reservoir storage volume is interpolated to daily values.
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3.3.2 Inferring discharge data

To handle the lack of discharge data for model calibration, we again resort to satellite
data. Specifically, we convert altimetry water levels (Jason 2/3) to discharge through
a rating curve specified for the location of the virtual station (see Fig. 3.4). The rating
curve (i.e., Manning’s equation) is identified based on the information on river cross-
section and water surface slope at the virtual station, which are also derived from satel-
lite data.

River cross-section

We construct the river cross-section at the virtual station by using multiple satellite
products (see Fig. B.1a). First, we use a digital elevation model (SRTM-DEM), which
has a spatial resolution of 30 m, to obtain the portion of the cross-section above the
water level at the observation time of the SRTM satellite (February 2000). To extend
the information available to estimate the river cross-section, we then pair data on river
widths at the virtual station with the corresponding water levels (temporal nearest ob-
servations of two satellites that provide river widths and water levels) (Bose et al.,
2021). River widths are estimated from the water pixels—classified from Landsat im-
ages based on Normalized Difference Water Index (NDWI)—along the river cross-
section. NDWI is calculated using the Green and Near-infrared bands of Landsat im-
ages (NDWI = (Green band - Near-infrared band)/(Green band + Near-infrared band))
(Zhai et al., 2015). All these bands have a spatial resolution of 30 m. Meanwhile,
the water level data are processed from Jason-2/3 altimetry satellite data provided by
DAHITI. Finally, for each river bank, we use a regression model (sixth-degree polyno-
mial) which is the best fit to the data points obtained from the two first steps. The two
models help us extrapolate the portion of the river cross-section under the lowest wa-
ter level observed by the satellites. It is worth noting that the approach works best for
river banks in natural conditions, where it is possible to infer the relation between river
widths and water levels. It would be challenging to apply this approach at Chiang
Saen, for example, where the river banks have been engineered.

Rating curve

We construct the rating curve at the virtual station with the Manning’s equation (Eq.
3.1):

Q =
A5/3S1/2

P 2/3n
, (3.1)

where Q, A, and P are discharge, river cross-section area, and wet perimeter corre-
sponding to the water depth D (see Fig. B.1b). As explained next, A and P are cal-
culated from the river cross-section for different values of water depth D. S is the
hydraulic slope, estimated from DEM data (which reflects the water surface slope at
the observation time). n is the Manning’s coefficient (riverbed roughness). Following
Chow (1959) and Engineering ToolBox (2004), we assume that it ranges from 0.03 to
0.06.

The rating curve is constructed in two steps. First, we use Eq. 3.1 to estimate the
discharge corresponding to each water depth with regular intervals of one meter (e.g.,
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0, 1, 2 m). After this step, we have at hand a number of data points, each containing
a value of water depth and its corresponding discharge. Then, we fit the data points
by a power curve. This translates into our rating curve. Note that when converting
altimetry water level to discharge using the rating curve, we convert altimetry water
level to water depth by deducting the river bed elevation (Fig. B.1b).

3.3.3 Sensitivity analysis and model calibration

Sensitivity analysis

We carry out a Global Sensitivity Analysis (Pianosi et al., 2016) to study the relationship
between the performance of VIC-Res and the parameterization of the rating curve. We
investigate a total of 10 model parameters, including 7 soil parameters of the rainfall-
runoff module, 2 parameters of the routing module, and the Manning’s coefficient ap-
pearing in the rating curve. We use Latin Hypercube Sampling to create 1000 samples
in the 10-dimensional parameter space defined by the ranges given in Sects. 3.3.1 and
3.3.2. For each parameter sample, we run a simulation over the period 2009–2018 (after
a warm-up period from 2005 to 2008), and reconstruct discharge data for the same pe-
riod with the rating curve. We then compare reconstructed and simulated discharges
through four performance metrics, which are described in the next subsection. Having
built this input (parameters) and output (performance metrics) dataset, we analyse the
co-dependence between the performance of VIC-Res and the Manning’s coefficient. We
also identify the parameter samples that map into the top 25 % values of each perfor-
mance metric and analyze if, and how, such constraining on performances maps back
into a constraining of the parameter values. The simulation experiment is run on an
Intel (R) Xeon (R) W-2175 CPU 2.50 GHz with 128 GB RAM running Linux Ubuntu
18.04. The total running time is about 200 hours.

Performance metrics

The performance metrics are calculated by comparing the simulated (by VIC-Res) and
remote-sensed discharge at the virtual station. Because the temporal resolution of
remote-sensed discharge is defined by the revisit time of altimetry satellite (approxi-
mately 10 days for Jason2/3), we calculate the performance metrics using the data of all
days in which altimetry water levels are available. Among the several metrics available
in literature (Dawson, Abrahart, and See, 2010), we chose four metrics that explicitly
capture different aspects of modelling accuracy. These are the Nash–Sutcliffe Efficiency
(NSE), Transformed Root Mean Square Error (TRMSE), Mean Squared Derivative Er-
ror (MSDE), and Runoff Coefficient Error (ROCE). NSE and TRMSE assess the model
performance on high and low flows, respectively, while MSDE accounts for the shape
of the hydrograph timing errors, and noisy signals. Finally, ROCE assesses the overall
water balance (Reed et al., 2013). The metrics are defined as follows:

NSE = 1−
∑n

t=1 (QSim,t −QRS,t)
2∑n

t=1 (Q
t
RS,t −QRS)

2 , (3.2)



Chapter 3. Calibrating macro-scale hydrological models in poorly gauged and
heavily regulated basins

46

where n is the number of satellite altimetry water level observations, QSim,t and QRS,t

are the simulated and remote-sensed discharge at the virtual station (for the observa-
tion number t), and QRS is the mean of the remote-sensed discharge.

TRMSE =

√√√√ 1

n

n∑
t=1

(zSim,t − zRS,t)2, (3.3)

where zsim,t and zRS,t represent the value of the simulated and remote-sensed dis-
charge at the virtual station (for the observation number t), both transformed by the
expression z = (1+Q)λ−1

λ , (λ = 0.3). In other words, λ scales down the values of the
discharge, thus emphasizing the errors on low flows.

MSDE =
1

n− 1

n∑
t=1

((QRS,t −QRS,t−1)− (QSim,t −QSim,t−1))
2 , (3.4)

ROCE = abs

(
QSim

P
− QRS

P

)
, (3.5)

where QSim is the mean of the simulated discharge at the virtual station, and P is the
mean annual rainfall.

Model calibration

As we shall see, the global sensitivity analysis helps us understand the relationship
between the performance of VIC-Res and the parameterization of the rating curve.
Moreover, by identifying the parameter samples that map into high values of the per-
formance metrics (here the top 25 %), the analysis helps us narrow down the range of
variability of (at least some of) the model parameters. However, one may still want
to complete the model calibration by further seeking for the value of the VIC-Res pa-
rameters that optimize the performance metrics. To this purpose, we couple VIC-Res
with ε-NSGA-II, a multi-objective evolutionary algorithm widely used for hydrological
modelling applications (Reed et al., 2013; Dang, Chowdhury, and Galelli, 2020). Here,
the decision variables are the 9 parameters of VIC-Res, while the objective function is
a vector consisting of the 4 metrics described in Sect. 3.3.3. Similarly to the sensitiv-
ity analysis, all metrics are calculated via simulation over the period 2008–2018, with
a spin-up period going from 2005 to 2008. The ε-NSGA-II is set up with ε = 0.001, an
initial population size of 10, and a number of function evaluations equal to 100. All per-
formance metrics are normalized between 0 and 1. The calibration exercise is carried
out on 10 independent trials, with the best (Pareto-efficient) solutions selected across
the 10 calibration exercises. The total run time is about 210 hours (using the same com-
putational infrastructure adopted for the sensitivity analysis).

3.4 Results

Here, we move across 3 steps. First, we illustrate the results leading to the estima-
tion of a discharge time series at the virtual station, including the identification of the
river cross-section and rating curve (Sect. 3.4.1). Then, we use sensitivity analysis to
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show that there exists a co-dependence between the Manning’s coefficient and the per-
formance of VIC-Res, and we propose an approach to overcome this potential issue
(Sect. 3.4.2). We finally calibrate VIC-Res and validate its performance using observed
discharge data at Chiang Sean (Sect. 3.4.3).

3.4.1 Estimation of the remote-sensed discharge at the virtual station

River cross-section

Fig. 3.5a shows the river cross-section at the virtual station, constructed through the
use of multiple satellite data. Specifically, each dark blue bar represents a 30 m cell of
the SRTM-DEM lying along the river cross-section. These bars are connected by a se-
ries of segments representing an estimate of the cross-section above the water surface
at the observation time of the SRTM satellite. That specific water surface is depicted
by the horizontal dark blue line at the elevation of 293 m. The light blue lines indi-
cate the river widths derived from 19 Landsat-5 images and water levels obtained from
Jason-2/3. Additional information about these images, water levels, and correspond-
ing collection dates are reported in Table B.1. Finally, the dotted blue line represents
the cross-section below the lowest observed water level. This line is created via ex-
trapolation by 2 regression models (sixth-degree polynomial), which are fitted to the
observations retrieved from DEM, Landsat-5, and Jason-2/3 (11 and 14 data points for
the left and right banks, respectively).

Rating curve

With the river cross-section at hand, we estimate the rating curve at the virtual station
using the Manning’s equation (Eq. 3.1). Since the value of the Manning’s coefficient
n is unknown, the value of the estimated discharge Q depends not only on the water
depth D but also on n, that is:

Q =
0.161D2.357

n
(3.6)

In Fig. 3.5b, we plot the range of variability of the rating curve corresponding to values
of n varying between 0.03 to 0.06 (Sect. 3.3.2). This range is represented by the light
blue band. Note the large increase in river discharge estimates corresponding to a
depth larger than 20 m. In this figure, we also report 3 rating curves corresponding to 3
specific values of n, namely minimum (dotted blue line), average (dark blue line), and
maximum (dashed blue line).

Remote-sensed discharge

Using the rating curve and water depth (converted from Jason-2/3 altimetry water
level data), we estimate 298 discharge data points at the virtual station during the pe-
riod 2009–2018 (Fig. 3.5c). The light blue band represents the envelope of the variability
of the discharge corresponding to values of n ranging between 0.03 and 0.06. The fig-
ure also depicts the discharge time series corresponding to the average value of the
Manning’s coefficient (n = 0.045), plus an additional time series obtained by scaling
the observed discharge at Chiang Saen by a coefficient (equal to 1.17) representing the
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FIGURE 3.5: River cross-section at the virtual station constructed from
multiple satellite data (a). The dark blue line is obtained from SRTM-
DEM, while the light blue lines are retrieved by paring Landsat-derived
river widths with Jason altimetry water levels. The dotted blue line is
created by using two regression models, which are first fitted to the right
and left banks and then extrapolated to the portion below the lowest ob-
served water level. Range of variability of the rating curve (at the virtual
station) for values of n ranging from 0.003 to 0.006 (light blue band) (b).
In this plot, we also illustrate three rating curves corresponding to spe-
cific values of n: minimum (dotted blue line), average (dark blue line),
and maximum (dashed blue line). Remote-sensed (RS) discharge at the
virtual station (c). The light blue band represents the range of variability,
with n varying from 0.03 to 0.06. The dark blue line is the estimated dis-
charge with the average value of n (0.045). Note that this time series is
relatively similar to the one obtained by scaling the discharge measured
at Chiang Saen by the area ratio (equal to 1.17). That time series is de-

picted by the dotted orange line.
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relative increase in drainage area between Chiang Saen and the virtual station (orange
dotted line). A qualitative comparison of these estimated discharge values provides
a few useful insights. First, there is large uncertainty in the discharge estimated dur-
ing the summer monsoon season. This result is explained by the characteristics of the
rating curve—the higher the value of D, the higher the uncertainty in Q (Fig. 3.5b).
Second, there seems to be a reasonable agreement between the discharge time series
corresponding to n = 0.045 and the one estimated from values observed at Chiang Sean.
This implicitly validates the rating curve, further suggesting that the mean value of n
might be a reasonable estimate. To further investigate this last point—and understand
how the Manning’s coefficient influences the performance of VIC-Res—we now move
to the sensitivity analysis.

3.4.2 Sensitivity analysis

Co-dependence between VIC-Res performance and Manning’s coefficient

The first fundamental step of our analysis is to understand whether co-estimating the
Manning’s coefficient and the parameters of the hydrological model (see Fig. 3.1) could
bias the calibration process, ultimately limiting the reliability of VIC-Res. To answer
this question, we leverage the results obtained by exploring via the simulation of 1000
different parameterizations of VIC-Res and Manning’s equation.

In Fig. 3.6 (panels a, d, g, and j), we illustrate the relationship between the 4 metrics
of performance calculated for VIC-Res (i.e., NSE, TRMSE, MSDE, and ROCE) and the
value of the Manning’s coefficient n. To aid the analysis, we highlight in darker color
the parameterizations yielding the top 25 % performance (250 samples) with respect to
each metric. For example, in Fig. 3.6a, the 250 samples with higher NSE are represented
by the dark blue lines, while the 750 samples with lower NSE are represented by the
light blue lines. The NSE threshold created by the top 25 % is equal to 0.48. Interest-
ingly, when comparing these 4 panels, we see that the values of n corresponding to the
best performance vary with the metric we consider. For example, the top 25 % perfor-
mance in terms of NSE is given by values of n ranging between 0.03 and 0.054, while
those giving the best performance for MSDE range between 0.037 and 0.06. This point
is consolidated by panels b, e, h, and k, where we show the frequency distribution of n
corresponding to the top 25 % performance for each metric. The minimum and maxi-
mum values we found for each distribution are [0.03, 0.054], [0.034, 0.06], [0.037, 0.06],
and [0.033, 0.059] for NSE, TRMSE, MSDE, and ROCE, respectively. Note, also, how
the median value of each distribution changes with the selected performance metric.

The explanation behind this result must be sought in the different aspects of modelling
accuracy that are captured by the four metrics (see Sect. 3.3.3). Let’s consider, for
instance, NSE, a metric that emphasizes model performance on high flows: the param-
eterizations of VIC-Res achieving the top 25 % performance are those corresponding to
smaller values of n, because those values translate (via the Manning’s equation) into
higher discharges. We observe, in other words, a co-dependence between the perfor-
mance of VIC-Res and the Manning’s coefficient: co-estimating the parameters of both
models while focusing on NSE means calibrating the hydrological model on discharge
data that are biased towards high flows (panel c). Similar conclusions can be drawn for
TRMSE, MSDE, and ROCE. In this case, the values of n associated to the best TRMSE
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FIGURE 3.6: The first column contains 4 parallel-coordinate plots. In
each plot, the left axis is a model performance metric (i.e., NSE, TRMSE,
MSDE, and ROCE) while the right axis is the Manning’s coefficient n.
Each line corresponds to one of the 1000 parameterizations generated by
Latin Hypercube sampling. The dark blue lines highlight the parame-
terizations yielding the top 25 % performance for each metric. The his-
tograms in the second column illustrate the frequency distribution of n
corresponding to these top 25 % parameterizations. The median is de-
picted by the dark blue line. In the last column, we report in light blue
the range of variability of the discharge estimated with n ∈ [0.03, 0.06]
(this is the same range as in Fig. 3.5c), and in dark blue the range corre-
sponding to the top 25 % performance for each metric. The black lines
are the discharge corresponding to the 4 median values of n (see the sec-
ond column) and the orange dotted line is the discharge estimated from
observations at Chiang Saen via the area-ratio method. Note how the
use of different performance metrics results in different ranges and dif-

ferent medians of the Manning’s coefficient.
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and MSDE performance shift upward, since both metrics emphasize model accuracy
on lower flows (panels f and i). For ROCE, most values of n are concentrated around
the median value of 0.043 (close to the mean of 0.45). This is because ROCE looks
at the overall water balance, thereby requiring calibrating the hydrological models on
discharge values that are more centered towards the bulk of the distribution (panel l).

Breaking the co-dependence

Having established that there can be a co-dependence between the performance of VIC-
Res and the Manning’s coefficient, we now turn our attention to a potential solution.
Ideally, one would like to calibrate a hydrological model that performs well with re-
spect to multiple performance metrics (Efstratiadis and Koutsoyiannis, 2010). Guided
by this simple concept, we consider the parameterizations of VIC-Res and Manning’s
equation associated with the top 25 % performance with respect to all metrics (i.e.,
NSE, TRMSE, MSDE, and ROCE). This leaves us with 40 parameterizations, illustrated
in Fig. 3.7. The first interesting point to note in the figure (right panel) is the empirical
distribution of n. Focusing on satisfactory performance across multiple metrics means
working with a narrow range of the Manning’s coefficient concentrated around the me-
dian value of 0.046. As we shall see later, this means that the discharge values used to
calibrate VIC-Res should not vary excessively, as we instead saw in Fig. 3.6.

FIGURE 3.7: Parallel-coordinate plot illustrating the 1000 parameteriza-
tions explored in our sensitivity analysis. The first nine axes (green) rep-
resent the VIC-Res model parameters, while the last axis (blue) repre-
sents the Manning’s coefficient n. Darker lines highlight the 40 param-
eterizations showing good performance on all metrics; these are iden-
tified by intersecting the four top 25 % parameterizations for each per-
formance metric. The panel on the right illustrates the frequency dis-
tribution of n corresponding to the 40 selected parameterizations. The

median of this distribution is 0.046.

The left panel of Fig. 3.7 illustrates the specific values of the parameterizations through
a parallel-coordinate plot, in which each axis represents a parameter and each line is a
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parameter sample. The 40 top-performing parameterizations are highlighted in bold,
while the remaining 960 are depicted with a lighter color. Here, we notice that only the
range of the flow velocity (v) can be narrowed down significantly (in addition to n, of
course). Specifically, when considering only the 40 top-performing parameterizations,
the range is reduced from [0.5, 5] to [2, 5]. However, all the other parameters of VIC-Res
cannot be constrained to narrower ranges—a common problem in macro-scale hydro-
logical models, including VIC (Yeste et al., 2020). We will return to this issue in Sect.
3.5.

Narrowing the uncertainty in discharge data

How does the new parameterization of n impact the remote-sensed discharge data
needed to calibrate the model? To answer this question, we focus on Fig. 3.8a, where
we compare two envelops of variability, the one corresponding to n ∈ [0.03, 0.06] (light
blue envelope) and the one with n ∈ [0.04, 0.052] (dark blue envelope). As expected,
the range of remote-sensed discharge is narrowed down significantly, especially during
the high flow periods. Another point that is worth noticing here is that the discharge
time series corresponding to the median value of n (i.e., 0.046) is close to the time series
estimated from the data available at Chiang Saen. This is a qualitative, yet informative,
validation of the sensitivity analysis.

To complete the analysis, we finally compare the envelopes of variability produced by
the Manning’s equation and VIC-Res for the narrow range of n (panel b). The compari-
son shows encouraging results, since the range of simulated discharge (green envelope)
is not too wide and it buffers around the remote-sensed one. Similar conclusions can be
drawn when considering the monthly average simulated discharge (panel e). Looking
at specific years, instead, we can note some inconsistencies between remote-sensed and
simulated discharge, as shown in panels c and d. In one case (2014), the model seems to
follow the river discharge fluctuations of the summer monsoon, while in the other case
(2013), the simulated discharge after the flow peak (September–November) is ∼1.5 to
2.5 times higher than the remote-sensed (and area ratio based) discharge. We suspect
the reason behind this is the uncertainty in the rainfall data that is typical of this region
(Kabir, Pokhrel, and Felfelani, 2022).

3.4.3 Model calibration and validation performance

In our last step, we seek to reduce the uncertainty associated with the discharge simu-
lated by VIC-Res presented in the previous section. To this purpose, we need to select
a specific discharge time series with respect to which we can calibrate the model. Al-
beit arbitrary, a reasonable choice is the remote-sensed discharge corresponding to the
median value of n, since (1) it does represent the envelope of variability produced by
the Manning’s equation and (2) it is rather close to the discharge at the virtual station
estimated by scaling the discharge observed at Chiang Saen. Using this time series, we
carry out a calibration task using the multi-objective evolutionary algorithm described
in Sect. 3.3.3. From the 1100 solutions we obtained, we select the best-performing
solutions by applying the same criteria used in the sensitivity analysis (i.e., top 25 %
performance with respect to all 4 metrics). The envelope of variability of the simulated
discharge corresponding to the twelve selected solutions is illustrated by the dark green
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FIGURE 3.8: In panel a, we compare the range of variability of the
remote-sensed (RS) discharge before and after sensitivity analysis. The
two envelopes correspond to values of n belonging to [0.03, 0.06] and
[0.04, 0.052]. In the plot, we add the discharge values corresponding to
the median value of n (0.046) and those estimated from the data at Chi-
ang Saen (orange dotted line). In panel b, we compare the RS discharge
against the discharge data simulated by VIC-Res. Both envelopes corre-
spond to a value of n ∈ [0.04, 0.052]. In panels c, d, and e we focus on
2013, 2014, and average monthly discharge. The plots of other individ-

ual years are provided in Fig. B.2.
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band in Fig. 3.9a, where it is contrasted against the envelope of variability generated by
VIC-Res before this calibration step. As expected, the range of variability is narrowed
significantly and is well in agreement with the remote-sensed discharge corresponding
to a value of n of 0.046 (dark blue line) and the area ratio-based discharge (orange dot-
ted line). The performance metrics of the twelve selected solutions—calculated by com-
paring simulated and remote-sensed discharge at the virtual station—are reasonable,
with NSE, TRMSE, MSDE, and ROCE belonging to the ranges [0.686, 0.689], [3.337,
3.360], [890,904, 908,805], and [0.03, 0.04], respectively. The detailed performance of
each solution is provided in Table B.2.

Finally, we report in Fig. 3.9b the performance of the model validation at Chiang Saen
station. The variation range of the simulated discharge corresponding to the twelve
selected solutions (dark green band) is much narrower than the one corresponding to
the 40 solutions selected by the sensitivity analysis (light green band). The new en-
velope of variability is also well in agreement with the observed discharge at Chiang
Saen station (orange dotted line). The performance metrics of the twelve selected solu-
tions show only a small decay when compared against the one achieved at the virtual
station—NSE, TRMSE, MSDE, and ROCE belong to the range [0.594, 0.616], [3.891,
3.935], [1,057,966, 1,071,282], and [0.169, 0.195] respectively. (The detailed performance
of each solution is provided in Table B.3.) We note that similar results are achieved by
selecting all 58 solutions belonging to the Pareto front, as shown in Fig. B.3, Tables B.4
and B.5. This is a remarkable result if we consider that no gauged discharge data were
used to calibrate the model.

3.5 Discussion and Conclusions

Our study contributes an approach for calibrating macro-scale hydrological models in
poorly gauged and heavily regulated basins. The approach uses satellite data to infer
both the discharge data used for model calibration and the reservoir operations in-
cluded in the hydrological model. Unlike previous studies, our approach uses Global
Sensitivity Analysis to assess the biases that could be introduced when co-calibrating
the hydrological model together with the rating curve used to reconstruct the discharge
data. This fundamental step also helps us narrow down the uncertainty range for the
parameterization of the rating curve in a more justified way. In turn, this step paves
the way to a more reliable calibration of VIC-Res.

Looking at the specific results of the sensitivity analysis, there are two important points
worth stressing here. First, we show that simultaneously estimating the parameters of
the hydrological model and the Manning’s coefficient (by optimizing a set of model
performance metrics) may significantly bias the reconstruction of the discharge values.
This implies that different combinations of performance metrics can result in different
estimations of river discharge, thereby influencing the parameterization of the hydro-
logical model. We saw, for example, that focusing on NSE erroneously biases the model
towards high flows. In turn, this could bias the results of hydrological modelling ap-
plications, such as discharge forecasts or climate change impact assessments. Second,
the sensitivity analysis specifically focused on the nine parameters of VIC-Res shows
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FIGURE 3.9: Performance of model calibration at the virtual station (a)
and model validation at Chiang Saen station (b). The dark green band is
the variation range of simulated discharge corresponding to the twelve
selected solutions in calibration, while the light green band is the one
corresponding to the 40 selected solutions from the sensitivity analysis.
The dark blue line is the remote-sensed discharge at the virtual station
with n = 0.046. In panel a, the dotted orange line is the discharge at the
virtual station scaled from the observed discharge at Chiang Saen. In
panel b, the line corresponds to the observed discharge at Chiang Saen.

the existence of equifinality, meaning that different parameterizations can yield simi-
lar performance in terms of NSE, TRMSE, MSDE, and ROCE. This equifinality issue is
arguably explained by the fact that we are using only river discharge data to inform
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the parameterization of both the rainfall-runoff and discharge routing modules. Pre-
vious research has systematically shown that a small number of parameters typically
dominates the variability of a given model output (though which parameters that are
dominant might vary with the chosen metric) (Wagener and Pianosi, 2019; Yeste et
al., 2020). One may therefore expect that observations of other hydrological processes,
such as evapotranspiration, could help reduce the uncertainty in the model parameters.

Our numerical framework seeks to reduce the pitfalls hidden in model calibration, but,
like any other modelling study, is potentially affected by various uncertainties. First,
because of the unavailability of gauged rainfall data, we use a gridded product—a
common approach for macro-scale studies. Yet, gridded rainfall data inevitably carry
uncertainties, especially in regions, like Southeast Asia, where the number of rainfall
gauges is limited (Funk et al., 2015; Kabir, Pokhrel, and Felfelani, 2022). Another source
of uncertainty is the estimation of the river discharge, which is here based on river
cross-section, rating curve, and altimetry data. Our results show that the estimation is
reliable, but one cannot deny that the spatial resolution of the DEM, the interpolation of
the cross-section below the lowest water level, or the use of altrimetry do not contribute
to modelling uncertainty. Still in this regard, we should also remind that approaches
based on the relationship between discharge, water levels, and cross-sections work best
on river stretches that are not affected by levees or other interventions. In this regard,
a potential game changer is the Surface Water and Ocean Topography (SWOT) NASA
satellite mission, recently launched in December 2022. SWOT will provide river width,
water level, and water surface slope for major rivers with an average revisit time of 11
days for the next three years (JPL, n.d.). This means we will be able to leverage existing
algorithms to estimate river discharge (Colin J. Gleason and Smith, 2014; M. Durand
et al., 2016; Hagemann, C. J. Gleason, and M. T. Durand, 2017) and then inform the im-
plementation of macro-scale hydrological model—an area certainly worth additional
research. Yet, we should not forget that model calibration requires time series longer
than three years. We could therefore envisage a future in which calibration exercises
assimilate multiple discharge data inferred from multiple satellite data.

Looking forward, we should consider expanding frameworks like the one presented
here to even more complex modelling environments. One often recurring in down-
stream applications is the presence of multiple human interventions, such as dams, ir-
rigation withdrawals, and groundwater pumping. Understanding how data concern-
ing the representation of all these processes influences model calibration remains an
open question. A similar comment applies to the calibration of multi-basin and global
models. Bringing all these elements together would be a major step towards a more
reliable calibration of macro-scale hydrological models.
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Chapter 4

Optimizing the filling strategy of
cascade reservoir systems:
A retrospective analysis of the
Lancang dams

4.1 Introduction

The water impoundment and operations of large reservoirs often cause socioeconomic
and environmental impacts, such as downstream flow alterations that affect ecosys-
tem services and biodiversity (Winemiller et al., 2016). It is even more critical for the
cascade reservoir systems located in large transboundary river basins, where riparian
countries have different views on how the reservoirs should be filled and operated. In
general, the upstream country (reservoir owner) usually tries to maximize the benefits
of the reservoir (e.g., hydropower production), while the downstream countries would
like to minimize the impacts on their habitat. For the reservoir filling period, ideally,
the upstream country wants to apply a fast water impoundment to quickly generate
hydropower. Conversely, the downstream countries may prefer a gradual filling strat-
egy that causes minimal impacts (Zaniolo et al., 2021). This conflict presents a challenge
in designing the reservoir filling strategy.

Over the past several decades, plenty of efforts have been focused on studying reser-
voir operating rule (Sale, Jr., and Herricks, 1982; M. S. Hossain and El-shafie, 2013;
Galelli et al., 2022). Unfortunately, the reservoir filling stage has been receiving less
attention than the operational stage in research activities (Y. Zhang, Erkyihum, and
Block, 2016). There is indeed a limited number of studies on how reservoirs should be
filled and the impacts of the filling strategy. In those studies, a limited number of alter-
native reservoir filling strategies were explored, and those strategies were created by
using one of three methods. The first method is the modification of the historical filling
strategy. For example, Zaniolo et al. (2021) classified the years in their study period into
three classes (dry, normal, and wet), then use three variable scaling factors associated
with the three classes to modify the historical filling strategy. The second method is
based on the inflow to the reservoir. More specifically, a percentage of inflow to the
reservoir (e.g., 10%, 20%) is assigned to each month or year during the filling period
(Mulat and Moges, 2014; Madson and Shen, 2020). The last method does not require a
historical filling strategy or information on inflow to the reservoir. It simply defines the
filling duration (e.g., 3 years, 5 years) and the percentage of reservoir storage volume
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that will be filled for each month or year in the filling duration (Y. Zhang, Erkyihum,
and Block, 2016). A gap we can see here is that either the previous approaches rely on
the historical filling strategy, which makes them not applicable to planned dams or they
may miss out on potential alternative reservoir filling strategies because only a limited
number of alternative filling strategies are created by simply defining a percentage of
reservoir storage volume or inflow to the reservoir for each time step in the filling pe-
riod.

In this work, we introduce a novel simulation-optimization approach for optimizing
the filling strategy for reservoir systems. To create alternative reservoir filling strate-
gies, we develop a new method (which does not depend on the historical filling strat-
egy) by parameterizing the filling strategy. By changing the parameters in their feasible
ranges with the support of an optimization algorithm, we can explore a large number
of potential strategies. By applying our approach to the Lancang dam system, we then
try to answer three questions: (1) What are the optimal filling strategies for the system?
(2) How good/balanced is the historical filling strategy? (3) Are there more balanced
filling strategies, and, if yes, how much upstream and downstream countries would
have gained and lost if such strategies were used instead of the actual strategy?

4.2 Study area

4.2.1 The Lancang-Mekong River Basin

The Lancang-Mekong River Basin is the largest transboundary river in Southeast Asia,
with a total drainage area of ∼ 795,000 km2 (small box in the panel (a) of Figure 4.1). The
river, which is ∼ 4,350 km long, originates from Tibetan Plateau in Southwest China
and flows through Myanmar, Laos, Thailand, Cambodia, and Vietnam, where it drains
into the Vietnam East Sea. Its upper portion—the Lancang—occupies almost half of
the river length and around a quarter of the catchment area. The Lancang Basin is
characterized by a complex topography, with high mountains and low valleys. Located
in the monsoonal climate region, the basin receives a large amount of precipitation
every year, 750 to 1025 mm across the basin. However, most of the precipitation (70-
80%) arrives during the wet season (June to November) (Yun et al., 2020). The Lancang
contributes about 80 km3 of water, accounting for approximately 16 % of the average
annual discharge of the entire Mekong (MRC, 2009).

4.2.2 The cascade dam system

The topographic and climatic characteristics of the Lancang Basin have turned it into a
hotspot for hydropower development. Over the past three decades, eleven dams have
been built and operated on the mainstream of the Lancang (WLE Mekong, n.d.). Figure
4.1a demonstrates the location of each dam in the cascade dam system, while Figure
4.1b shows the total storage volume and the commission time of each dam. The infor-
mation is retrieved from Do et al. (2020). This cascade dam system has a total capacity
of ∼ 42,000 MCM, which can control up to 55 % of the average downstream annual
discharge, i.e., at Chiang Sean station in Northern Thailand (see the location in Figure
4.1a). Among these eleven dams, Xiaowan and Nouzhau are the two largest dams,
which account for ∼ 85 % of the total storage of the system. Because of their size, they



Chapter 4. Optimizing the filling strategy of cascade reservoir systems:
A retrospective analysis of the Lancang dams

59

FIGURE 4.1: The Lancang River Basin—the upper portion of the Mekong
River Basin (a), the total storage volume and commission time of the
dams in the Lancang River (b), and the actual filling strategy of Xiaowan
(c) and Nouzhadu (d) reservoirs inferred from satellite data (Chapter 2).

play the role of system ‘drivers’, gradually storing water until reaching their maximum
operational level in the wet season and releasing water to the downstream reservoirs
in the dry season to ensure that the other reservoirs can run at their normal operational
level. Therefore, the other reservoirs have very limited storage variations (IRN, 2014).

4.2.3 Historical filling strategies

In panels (c) and (d) of Figure 4.1, we show the filling strategy of Xiaowan and Nuozhadu
reservoirs inferred from satellite data (Chapter 2). As shown in the figure, Xiaowan
was filled in four years, from December 2008 to November 2012, passing its dead stor-
age after around one year of impoundment. Meanwhile, Nuozhadu was filled in only
two years, from December 2011 to November 2013, also passing its dead storage after
around one year of impoundment. Note that the filling strategies retrieved from satel-
lite data are matching with the filling timeline mentioned in Hua, Ke, and Dai (2018)
and Lv and Chi (2018) for Xiaowan and Nuozhadu, respectively. Other reservoirs have
a relatively small storage capacity compared to Xiaowan and Nuozhadu, varying from
74 MCM (Lidi) to 1418 MCM (Huangdeng); so they were filled in just a few months
(see Figure C.1).

By focusing on the filling strategies of Xiaowan and Nuozhadu, we choose our study
period to go from 2008 to 2016. This period allows us to test the filling strategies with a
duration of maximum five years for each reservoir (see the explanation in Section 4.3.2).
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The reason for such a constraint in our study period is that the other reservoirs are
relatively small compared to Xiaowan and Nuozhadu; so, the storage variations of the
entire system before and after their filling period seem to be stationary. If we include
the stationary stages, when calculating the average annual indicators for assessing the
impacts of the filling strategies (see Section 4.3.3), we will hardly see the differences of
the indicators with different filling strategies. For the other reservoirs in the system, we
use their actual filling strategy and operations inferred from satellite data (Chapter 2).

4.3 Methodology

In this work, we develop a simulation-optimization approach, which includes a hy-
drological model—VIC-Res—and a multi-objective evolutionary algorithm—ϵ-NSGA-
II (Figure 4.2). VIC-Res model, described in Section 4.3.1, simulates the water level of
reservoirs, release from reservoirs, and downstream discharge (at Chiang Saen). We
simulate these processes using alternative reservoir filling strategies, and each of the
strategies is determined by a set of parameters—referred to as filling strategy param-
eters here-after (see Section 4.3.2). VIC-Res output is used to calculate three objective
functions (see Section 4.3.3), which ϵ-NSGA-II uses to evaluate and adjust the filling
strategy parameters. This process (the blue loop in Figure 4.2) is repeated a predefined
number of times (see Section 4.3.3), and the optimal solutions are identified from all ex-
plored solutions. To calculate the average monthly deviation of the downstream flow
from its natural flow (MD), we also use the natural downstream discharge (at Chiang
Saen). We estimate this data by running VIC-Res with the no-dam scenario (i.e., the
reservoir operation module in VIC-Res is switched off). We also run VIC-Res with the
actual reservoir filling strategy obtained from satellite data (the output of Chapter 2)
and calculate the corresponding objective functions (the pink arrows in Figure 4.2). Fi-
nally, we evaluate the performance of the actual reservoir filling strategy (also referred
to as the baseline) by comparing it with the performance of the optimal solutions.

4.3.1 Hydrological Model

In this study, we use a large-scale semi-distributed hydrological model—VIC-Res (Dang,
Chowdhury, and Galelli, 2020; Dang, Vu, et al., 2020), a novel variant of VIC (Liang et
al., 2014). VIC-Res includes 2 modules, namely rainfall-runoff and routing. The first
module calculates the base-flow and runoff for each pixel in the model domain from
various inputs, including precipitation, temperature, wind speed, land cover, albedo,
and Leaf Area Index. The second module routes the base-flow and runoff, calculated
previously, throughout the river network using the method presented in Lohmann,
Nolte-Holube, and Raschke (1996) and Lohmann, Raschke, et al. (1998). In the rout-
ing module of VIC-Res, an explicit representation of reservoir operations is integrated.
The option of using pre-determined time-series of reservoir storage volume allows us
to capture the effect of reservoirs not only in operational period but filling period also.
The model calculates the reservoir release from the input of storage volume, simulated
inflow to reservoir and evaporation by using the mass balance method. Our VIC-Res
model in the Lancang River Basin was calibrated previously in Dang, Chowdhury, and
Galelli (2020), and its reliability was improved by another calibration exercise (for 7 soil
parameters and 2 routing parameters) with an additional source of stream flow data—
archived from satellite observations (see more details in Chapter 3). Input data for
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FIGURE 4.2: Flowchart illustrating the adopted simulation-optimization
approach, which includes a hydrological model (VIC-Res) and a multi-
objective evolutionary algorithm (ϵ-NSGA-II). VIC-Res model simulates
the water level of reservoirs, release from reservoirs, and downstream
discharge using alternative reservoir filling strategies. Each of the filling
strategies is determined by a set of filling strategy (FS) parameters. The
VIC-Res output is used to calculate three objective functions, which ϵ-
NSGA-II uses to evaluate and adjust the filling strategy parameters. This
process (the blue loop) is repeated a predefined number of times, and the
optimal solutions are identified from all explored solutions. The natural
downstream (DS) discharge, used for calculating the average monthly
deviation of the downstream flow from its natural flow (MD), is simu-
lated by the VIC-Res model with the no-dam scenario. The performance
of the actual reservoir filling strategy (inferred from satellite data) is ob-
tained following the pink arrows, then evaluated by comparing it with

the performance of the optimal solutions.

VIC-Res including climate forcing data, land use and cover, albedo, Leaf Area Index,
and flow direction can be found in Section 3.3.1.
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4.3.2 Alternative reservoir filling strategies

Notations and assumptions

To model our reservoir filling strategies, we use the following notations:

TF - Filling duration or time to reach full storage of reservoir (unit: year);
SD - Dead storage volume of reservoir (unit: MCM), SD = 5096 and 12500 MCM for
Xiaowan and Nuozhadu respectively;
SF - Full storage volume of reservoir (unit: MCM), SF = 13725 and 20077 MCM for
Xiaowan and and Nuozhadu respectively;
SWt - Storage voulume of reservoir at the end of the wet season (November) of year t
(unit: MCM), t = 1, 2, ..., TF ;
SDt - Storage volume of reservoir at the end of dry season (May) of year t (unit: MCM),
t = 1, 2, ..., TF .

To make our reservoir filling strategies practical and also to avoid a high computational
cost (due to introducing too many parameters and calculation cases), the following as-
sumptions are made:

(1) The starting time of the filling strategies in our experiment follows the actual start-
ing time, i.e., December 2008 and December 2011 for Xiaowan and Nuozadu, respec-
tively. We do not move the starting time forward because the construction of reservoirs
may not be completed yet. We do not move the starting time backward neither, since
it delays the commission time of reservoirs. Besides, our filling strategies finish at the
end of wet seasons (November), also based on the actual operations of Xiaowan and
Nuozadu. These reservoirs store water in the wet seasons until November (reaching
the peak values of storage volume in November) and release water thereafter. There-
fore, the filling duration TF is an integer number, e.g., 3 years or 4 years, with each year
starting from December (of the previous year) to November (of that year).

(2) The impoundment of each reservoir can be completed in one wet season (June to
November). This is possible because the total inflow to each reservoir in a wet season
is larger than the total storage volume of that reservoir. Particularly, The total inflow to
Xiaowan in the wet season of each year (from 2009 to 2013) varies from 23500 to 28800
MCM (note that the inflow is simulated by VIC-Res and there was no reservoir in the
upstream of Xiaowan in this period). Meanwhile, the total inflow to Nuozhadu in the
wet season of each year (from 2012 to 2016) varies from 24900 to 37200 MCM (with the
actual operation of Xiaowan in the upstream of Nuozhadu) and from 22600 to 33700
MCM (if Xiaowan is fully operated). However, to avoid designing aggressive filling
strategies, we set the minimum filling duration of each reservoir at 2 years. On the
other hand, the maximum filling duration of each reservoir is 5 years, which is longer
than the actual filling duration of Xiaowan and Nuozhadu. The selection of 5 years (till
2013 and 2016 for Xiaowan and Nuozhadu, respectively) is also suitable with the fact
that from the end of 2016, at least one new dam in the Lancang River is filled. There-
fore, TF = 2, 3, 4, 5.

(3) The storage volume of reservoirs at the end of the first month (December 2008 and
December 2011 for Xiaowan and Nuozadu respectively), SW0, is set to 1000 MCM,
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which is approximately the actual values.

(4) To ensure progress of the reservoir filling, the storage volume at the end of wet sea-
son of each year in filling period should be higher than the one of the previous year,
SWt ≥ SW (t−1).

(5) Before passing dead storage, during the dry seasons, reservoirs either store more
water or keep the same storage volume. This means that the storage volume at the
end of the dry season of each year is higher than or equal to the one at the end of the
previous wet season, i.e., SDt ≥ SW (t−1).

(6) After passing dead storage, there is no storing of water in dry seasons. In most cases,
storage volume is kept the same in dry seasons until the end of filling period. How-
ever, Xiaowan, in fact, released water in dry seasons to quickly produce hydropower.
Therefore, the storage volume at the end of dry season of each year is less than or equal
to the one at the end of the previous wet season, i.e., SDt ≤ SW (t−1).

(7) After the filling period (reaching the full storage), the reservoir storage volume fol-
lows the actual variations estimated from satellite data.

(8) The impoundment of each month in a dry/wet season follows a distribution based
on the average monthly inflow to reservoir simulated by VIC-Res within the study pe-
riod. Note that there is no difference in the inflow to Xiaowan under different scenarios
because there is no reservoir upstream, and no significant difference in the inflow to
Nuozhadu under different scenarios because, in 2012-2013, Xiaowan (in the upstream
of Nuozhadu) almost reached its stationary storage variation with all scenarios.

Standard reservoir filling strategies

To produce the alternative reservoir filling strategies, we first construct our standard
reservoir filling strategies, which are modified later to create other alternative reservoir
filling strategies. As illustrated in Figure 4.3a, our standard reservoir filling strategies
are created simply by distributing an equal portion of the total reservoir storage volume
(= SF /TF ) to the impoundment of each year in the filling period. For example, in the
case of 4-year filling period (TF = 4), the reservoir is filled 25% of its total volume in
each year. The storage volume at the end of each year (wet season) are SW1 = 25%
SF , SW2 = 50% SF , SW3 = 75% SF , and SW4 = 100% SF . In the standard reservoir
filling strategies, the impoundment is carried out in the wet seasons only, and storage
volume is kept the same throughout the dry seasons (SDt = SW (t−1)). After the filling
period (TF ), SDt and SWt follow the actual storage variations—baseline—inferred from
satellite data.

Variants of the standard reservoir filling strategies

We create the variants of the standard reservoir filling strategies by changing the val-
ues of SDt and SWt within their ranges. Specifically, the storage volume at the end of
wet seasons, SWt, varies from SWt(standard) − 1/2 ·SF /TF to SWt(standard) +1/2 ·SF /TF

(see Assumption 4). Before passing the dead storage, the storage volume at the end of
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FIGURE 4.3: Reservoir filling strategy parameterization. Standard reser-
voir filling strategies with filling duration, TF = 2, 3, 4, 5 years (a). Ex-
amples of creating variants of the standard reservoir filling strategy (TF

= 4) by modifying SWt—a function of parameter VWt (b), and SDt—a
function of parameter VDt with two cases, before (c) and after (d) pass-
ing dead storage. Panel (e) shows 2 alternative reservoir filling strategies
with Variant 5 as a reconstruction of the baseline. Panel (f) shows Vari-
ant 5 in two formats, 2 values/year and monthly values. The monthly

time-series is created using the monthly impoundment distributions.

dry seasons, SDt, varies from SW (t−1) to SW (t−1)+1/2(SWt−SW (t−1)) (Assumption 5);
and after passing dead storage, SDt varies from SD to SW (t−1) (Assumption 6). To have
different variations of SDt and SWt, we introduce the following parameters:

VWt - Parameter of the storage volume at the end of wet season of year t (unitless),
VWt ∈ [−1, 1], t = 1, 2, 3, 4, 5;
VDt - Parameter of the storage volume at the end of dry season of year t (unitless),
VDt ∈ [0, 1], t = 1, 2, 3, 4, 5.

Then, the storage volume at the end of wet seasons, SWt, is identified using Equation
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4.1. Meanwhile, the storage volume at the end of the dry seasons, SWt, is identified
using Equation 4.2 (before passing dead storage) and Equation 4.3 (after passing dead
storage). For example, illustrated in Figure 4.3b, SW2 in the case of 4-year filling period
varies from SW2(standard) − 1/2 · SF /4 (when VW2 = −1) to SW2(standard) + 1/2 · SF /4
(when VW2 = 1). We create a variant by choosing VW2 = 1 while keeping other SWt

and SDt the same (VWt = 0, t ̸= 2 and VDt = 0). In Figure 4.3c, we show the variation
range of SD0 (before passing dead storage), which is from SW0 (when VD1 = 0) to
SW0 + 1/2(SW1 − SW0) (when VD1 = 1). We create a variant by choosing VD1 = 0.8
while keeping other SWt and SDt the same (VWt = 0 and VDt = 0, t ̸= 1). In Figure
4.3d, we show the variation range of SD4 (after passing dead storage), which is from
SD (when VD4 = 1) to SW3 (when VD4 = 0). We create a variant by choosing VD4 = 0.7
while keeping other SWt and SDt the same (VWt = 0 and VDt = 0, t ̸= 4).

f(VWt) = t
SF

TF
+ VWt

1

2

SF

TF
(4.1)

g(VDt) = SW (t−1) + VDt
1

2
(SWt − SW (t−1)) (4.2)

h(VDt) = SW (t−1) − VDt(SW (t−1) − SD) (4.3)

In Figure 4.3e, we show 2 examples of alternative reservoir filling strategies, which are
modified from a standard reservoir filling strategy (TF = 4). Variant 5 is an example
that is similar to the baseline of Xiaowan. In other words, our reservoir filling strategy
parameterization is able to reconstruct the actual filling strategies. Finally, in Figure
4.3f, we show the Variant 5 with 2 formats, 2 values/year and monthly values. The
second one is created by using the monthly impoundment distributions mentioned in
Assumption 8. We interpolate the monthly time-series data to a daily time-series data,
that we use as the input of the reservoir operation module in VIC-Res.

4.3.3 Optimizing reservoir filling strategy

Decision variables

The decision variables in our optimization exercises are VWt and VDt (see Section 4.3.2),
which determine our alternative filling strategies. Since we are testing our approach on
2 reservoirs (Xiaowan and Nuozhadu), and the maximum filling duration is 5 years, the
total number of decision variables is 20.

Objective functions

The objective functions are selected to capture the effects of the filling strategies of the
Lancang reservoirs system. Our objective functions, adapted from Galelli et al. (2022),
include benefits for upstream, represented by an indicator of hydropower production
(AH), and impacts downstream represented by two indicators of downstream flow
modification by the dam system (R30 and MD). The three objective functions are de-
fined below:

(1) AH - Average annual hydropower production of the dam system (unit: TWh/year),
which is to be maximized.

stefano_galelli
Highlight
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AH =
1

Y

Y∑
y=0

Dy∑
d=1

N∑
n=1

Pydn (4.4)

where Pydn is the hydropower production of dam number n, on day d, year y. N is the
number of dams in the system. Dy is the number of days in year y, and Y is the number
of years considered in this study (i.e., 8 years, from 2009 to 2016).

(2) R30 - Average annual ratio between 30-day maximum and 30-day minimum flows
to downstream—calculated with discharge at Chiang Saen station—(unitless), which is
to be maximized.

R30 =
1

Y

Y∑
y=0

Q30,max
y

Q30,min
y

(4.5)

where Q30,max
y and Q30,min

y are the 30-day maximum and minimum flows at Chiang
Saen station of year y. R30 is an indicator that reflects the shape of the hydrograph. A
high value of R30 means that annual stream flow has a strong seasonal hydrological
regime. R30 of the natural stream flow at Chiang Sean (simulated by VIC-Res under
the no-dam scenario) is approximately 11.758. The Lancang dams tend to decrease R30

at Chiang Saen since they decrease flood season flow and increase dry season flow.

(3) MD - Average monthly deviation of the flow to downstream from its natural flow—
calculated with discharge at Chiang Saen station—(unitless), which is to be minimized.

MD =
1

M

M∑
m=1

|Qsim
m −Qnat

m |
Qnat

m

(4.6)

where Qsim
m is the discharge of month m at Chiang Saen station simulated by VIC-Res

with reservoir filling strategies, while Qnat
m is the natural discharge of month m at Chi-

ang Saen station simulated by the VIC-Res model with its reservoir operation module
switched off (no-dam scenario). M is the number of months considered in this study
(i.e., 96 months, from January 2009 to December 2016). The reason for maximizing R30

and minimizing MD is to decrease the alteration level of the downstream flow regime,
which drives key ecosystem services and and biodiversity.

Experimental setup

For our optimization exercise, we employ a multi-objective evolutionary algorithm—ε-
NSGA-II. We set the initial population size equal to 20, the number of function evalua-
tions equal to 500, and ε equal to 0.001. We normalize all performance metrics between
0 and 1. The optimization exercise is carried out independently for different cases of
TF . There are a total of 16 cases (4 TF values of Xiaowan x 4 TF values of Nuozhadu).
The best (Pareto-efficient) solutions are selected across the 16 optimization exercises.
The experiment is run on an Intel (R) Xeon (R) W-2175 CPU 2.50 GHz with 128 GB
RAM running Linux Ubuntu 18.04 with a total running time of about 84 hours.
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4.4 Results

4.4.1 Trade-offs between objective functions

After running our experiment, we receive a total of 280 members in the Pareto front
(non-dominated solutions). To visualize the trade-offs between objective functions, we
produce the scatter plots (Figure 4.4). Overall, the plots confirm the trade-offs between
the benefits and impacts created by filling in the reservoirs. In particular, in panel (a),
we can easily notice a strong correlation between the average annual hydropower pro-
duction (AH , to be maximized) and the average monthly deviation of the downstream
flow (i.e., at Chiang Saen) from the natural flow (MD, to be minimized): the more
hydropower is produced during the filling period, the more the downstream flow is
altered, and vice versa. Panel (b) shows a relatively strong correlation between the av-
erage annual hydropower production and the average annual ratio between the 30-day
maximum and 30-day minimum flows at Chiang Saen (R30, to be maximized). At the
same level of MD, the higher AH is, the lower R30 is. On the other hand, in panel
(c), we hardly see a correlation between the two objective functions which capture the
impacts of reservoirs on the downstream flow (R30 and MD). Finally, in panel (d),
we provide a 3D scatter plot using all three objective functions. The 3D visualization
agrees with the insight found in panels (a), (b), and (c).

Interestingly, the actual filling strategy of Xiaowan and Nuozhadu (also referred to as
the baseline, represented by pink color in Figure 4.4) is not dominated by the Pareto
members. Yet, we note that our filling strategy parameterization is not able to cre-
ate the exact same strategy as the baseline. It is because we create the monthly time
series from the storage values at the end of wet and dry seasons using our monthly
impoundment distribution (see Section 4.3.2), meanwhile the baselines did not follow
that distribution. Furthermore, compared to the values of the objective functions of the
Pareto members, the baseline has a high value of AH , a low value of R30, and a high
value of MD. This means that the actual filling strategy of Xiaowan and Nuozhadu
was applied to prioritize hydropower production. We provide more insights into this
aspect in the next section.

4.4.2 Evaluation of the filling strategies

In this subsection, we compare the values of each objective function (AH , R30, and MD
in panels (a), (b), and (c) of Figure 4.5 respectively) corresponding to each Pareto solu-
tion groups (light blue), all solutions (dark blue), and the baseline (pink). The Pareto
solutions are grouped by the filling durations (TF ) of the two reservoirs, and the num-
ber of solutions in each group is shown in Figure 4.5 (in the parentheses under group
name). For example, Group X4-N2 includes 25 solutions, which are a 4-year filling
strategy for Xiaowan and a 2-year filling strategy for Nuozhadu.

The first three groups (X2-N2, X2-N3, and X3-N2) are the most ‘aggressive’ groups re-
garding the time to fill, with at least one reservoir filled in 2 years and at most one
reservoir filled in three years. These groups have high AH values, but low R30 values
and high MD values. These groups are favorable for the upstream country (China).
Also considered favorable for upstream, Group X4-N2 has high AH values and high
MD values, however, its R30 values vary in a higher and broader range. By extending
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FIGURE 4.4: Pareto front and the correlations between the objective func-
tions. Panel (a) reveals a strong correlation between the average an-
nual hydropower production (AH , to be maximized) and the average
monthly deviation of the downstream flow (i.e., at Chiang Saen) from its
natural flow (MD, to be minimized). Panel (b) shows a relatively strong
correlation between AH and the average annual ratio between the 30-
day maximum and 30-day minimum flows at Chiang Saen (R30, to be
maximized). In panel (c), the correlation between R30 and MD is hardly
seen. Panel (d) is a 3D scatter plot using all three objective functions. The
actual filling strategy of Xiaowan and Nuozhadu (the baseline, repre-
sented by pink color) behaves like a Pareto member, which was applied

to prioritize hydropower production.

one more year in the filling duration of either Nuozhadu (X4-N3) or Xiaowan (X5-N2),
we can lower down MD values and increase R30 values (some strategies in Group X5-
N2 even have the highest values of R30), which are more favorable for downstream.
Nevertheless, by doing so, we also decrease AH (although some strategies in Group
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FIGURE 4.5: Comparison of the values of each objective function (AH ,
R30, and MD in panels (a), (b), and (c) respectively) corresponding each
Pareto solution groups (light blue), all solutions (dark blue), and the

baseline (pink).

X5-N2 still can maintain high values of AH). Group X3-N3 has a quite similar perfor-
mance to Group X4-N3, but relatively lower R30 values. Lastly, the two last groups
(N5-X3 and N5-X4) have low MD values, but also low AH values. R30 values of these
groups are higher than the ones of the most ’aggressive’ groups, but not the highest.
These groups are considered favorable for the downstream.

Recall that the baseline follows the durations of Group X4-N2: Represented by the pink
dotted lines in Figure 4.5, the performance of the baseline shows that the actual filling
strategy of Xiaowan and Nouzhadu is favorable for upstream with a high value of AH
(35.430 TWh/year), a low value of R30 (7.501), and a high value of MD (0.348).

4.4.3 Pros and cons of more balanced strategies

Based on our analysis in the previous section, we select two groups of more balanced
strategies (X4-N3 and X5-N2) for a more detailed analysis to see how much we would
have gained and lost if we used such strategies instead of the actual strategy. First, a
simple calculation using Equation 4.7 reveals that when changing from the baseline to
the filling strategies in Groups X4-N3 and X5-N2, we receive slightly less hydropower,
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AH decreases by 4% - 7% and 2% - 7% for X4-N3 and X5-N2, respectively. However,
the two remaining indicators are improved significantly, which is beneficial for down-
stream. To specify, R30 increases by 6% - 13% and 7% - 25% for X4-N3 and X5-N2,
respectively. Meanwhile, MD reduces 21% - 25% and 7% - 15% for X4-N3 and X5-N2,
respectively.

FD =
Falt − Fbl

Fbl
· 100% (4.7)

where FD is the difference between the objective function values when changing from
the baseline to an alternative filling strategy. FD is calculated for each objective func-
tion (AH , R30, and MD). Falt and Fbl are the objective function values corresponding
to the filling strategy and the baseline.

FIGURE 4.6: Average monthly discharge at Chiang Saen (a) and the per-
centage of modification from the natural flow created by the actual and
alternative filling strategies (b). The alternative filling strategies include
the non-dominated solutions in Group X4-N3 (light blue) and Group
X5-N2 (dark blue) compared against the baseline (dark pink) and the

no-dam scenario—natural flow condition (light pink).

In Figure 4.6, we provide a detailed look at downstream flow (i.e., at Chiang Sean
station). Particularly, in Panel (a), we compare the average monthly discharge at Chi-
ang Saen with different filling strategies for the dam system. Those strategies include
the ones in Group X4-N3 (light blue) and Group X5-N2 (dark blue) compared against
the baseline (dark pink) and the no-dam scenario—natural flow condition (light pink).
Note that for the two groups of strategies, we use an average value representing all
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strategies for each month. The overall point that can be noticed from the figure is that
the discharge at Chiang Sean is modified in the same way (increasing the dry season
flow and decreasing the wet season flow) but at different levels under the impacts of
the different strategies. To see clearly the difference in the levels of flow modification,
we calculate and show, in Panel (b), the percentage of flow modification from the nat-
ural flow. From the plot, we can see that the strategies of the two selected groups can
help to reduce the level of flow modification created by the baseline, especially for the
months in the dry season (December to May). For example, in April, the modification
levels created by the selected filling strategies is only around half of the one created by
the actual strategy.

FIGURE 4.7: More balanced strategies—non-dominated solutions in
Groups X4-N3 (the left two columns) and X5-N2 (the right two columns).
Dark blue lines are the strategies with high AH values (top panels), high
R30 (middle panels), and low MD (bottom panels). All strategies are

compared against the baseline (pink color).

Finally, In Figure 4.7, we plot the filling strategies of two groups (X4-N3 in the left
two columns and X5-N2 in the right two columns). For each group, we highlight in
dark blue color the strategies with high AH values (top panels), high R30 (middle pan-
els), and low MD (bottom panels). All strategies are compared against the baseline
(pink color). We notice the time to pass the dead storage of the reservoirs—another
aspect that can be used to evaluate the reservoir filling strategies. This factor affects the
time when the dams can start generating hydropower. In particular, some strategies
in Group (X4-N3) can ensure the time to pass the dead storage of Xiaowan to be the
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same as the baseline; yet, the other strategies in this group delay the time to pass dead
storage by around 6 months (when trying to prioritize R30, panel (b)). For Nuozhadu,
the time to pass the dead storage is delayed by 10 - 12 months. On the other hand, the
X5-N2 strategies delay the time to pass the dead storage of Xiaowan by 5 - 14 months.
Interestingly, by extending the filling duration of Xiaowan, we can reduce the water
impoundment of Xiaowan in 2012, followed by an increase in the inflow to Nuozhadu
downstream. Consequently, the water impoundment of Nuozhadu this year could be
increased; and the time to pass the dead storage could be pushed forward by 3 - 4
months. Nevertheless, we are not able to do further analysis on the effects of shifting
the time to pass the dead storage because we do not have at hand the official informa-
tion on the commission time of the dams.

4.5 Discussion and Conclusions

Our study contributes an approach to optimize the filling strategy for cascade reservoir
systems. By parameterizing the filling strategy, and changing the parameters in their
feasible ranges with the support of an optimization algorithm (ε-NSGA-II), we can ex-
plore a large number of alternative filling strategies. Applying our approach to the
Lancang dam system, we provided the optimal filling strategies for the system, eval-
uated the historical filling strategy by comparing it against the optimal solutions, and
showed how much upstream and downstream countries would have gained, and lost,
if more balanced strategies were used instead of the actual strategy. Our experiment
results in 280 optimal filling strategies corresponding to 280 non-dominated solutions
on the Pareto front. Interestingly, the actual filling strategy is not dominated by the op-
timal strategies. Our analysis shows that the actual filling strategy is favorable for up-
stream with a high value of average annual hydropower production and a high level of
downstream flow alteration (i.e., a low value of average annual 30-day maximum and
minimum flows ratio and a high value of average monthly flow deviation from natural
flow). Lastly, by changing the actual filling strategy to the more balanced filling strate-
gies (which extent the actual filling duration of either Xiaowan or Nuozhadu by one
year), the upstream country may expect a slight decrease in hydropower production,
however, there are significant improvements in downstream flow alteration.

It is worth noting that there are still a few limitations in our study. First, the outcome of
the study is potentially affected by the uncertainties of the hydrological model, which
we use to simulate the filling process, inflow, and release of the reservoirs as well as the
downstream flow. The uncertainties could come from the rainfall input data or/and
model calibration. Second, we use only two parameters for each year in the filling pe-
riod (at the end of the dry and wet seasons) and convert the half-yearly time series to
the monthly time series of storage volume. Doing this way, we may miss out on poten-
tial solutions.

Finally, our approach can be applied to other reservoir systems. When applying to the
other systems, we may consider other objective functions which work well for the dis-
tinctive features of those systems (e.g., the drop in water level of a downstream lake
(Zaniolo et al., 2021)). Since our method for creating alternative filling strategies is free
from using the historical filling strategy, our approach also can be used for dams under
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construction and planned dams. In fact, more dams are currently being constructed
and planned to be built in the large transboundary river basins. In the Lancang basin,
Tuoba dam, which has a capacity of 1039 Mm3, is currently under construction. Addi-
tionally, ten new dams with a total storage capacity of about 64 950 Mm3 are planned
to join the hydropower fleet of the Lancang (Schmitt et al., 2019). Moving to the down-
stream, 9 large-scale dams (capacity from ∼ 1000 to more than 4000 Mm3) are slated for
the mainstream of the Lower Mekong (Do et al., 2020). Therefore, having tools that can
help design more sustainable filling strategies is very important.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we developed a suite of three approaches to address three problems orig-
inating from asymmetries in transboundary river basins. The problems include (1) the
lack of information on how reservoirs are operated, which causes controversies among
riparian countries, (2) the lack of streamflow data for calibrating macro-scale hydro-
logical models in poorly gauged and heavily regulated basins, which characterizes the
transboundary river basins, and (3) the need for optimal reservoir filling strategies that
can balance the upstream benefits and downstream impacts. Our approaches leverage
remote-sensed data, process-based hydrological models, and use of systems analysis
(i.e., machine learning, sensitivity analysis, and multi-objective optimization). Besides
the methodological contributions, this thesis also contributes to the knowledge of the
study site—the Lancang-Mekong River Basin—which well exemplifies the typical is-
sues of transboundary river basins.

In the first problem (Chapter 2), we use a 3-step approach to overcome the challenge
of the lack of information on the reservoir operations of the Lancang dam system.
First, we estimate the relationship between reservoir water surface area and storage
volume (also called the area-storage curve) from the SRTM digital elevation model.
Then, we calculate the reservoir water surface area from Landsat satellite images by
using our novel water surface area estimation algorithm, which helps remove the ef-
fects of clouds, no-data pixels, and other disturbances. Lastly, we infer the time series of
reservoir storage volume from the time series of water surface area via the area-storage
curve. We leverage satellite altimetry water level data (i.e., Jason and Sentinel-3) to
validate our results derived from Landsat images for a couple of reservoirs for which
altimetry water level data are available. Our results describe the evolution of the Lan-
cang dam system. We provide the 13-year storage volume time series data of the ten
selected reservoirs and highlight the key role of Xiaowan and Nuozhadu reservoirs,
which account for approximately 85 % of the total storage of the entire system. Carry-
ing out an additional analysis of the discharge downstream, we show that the Lancang
dam system can retain up to ∼ 50 % of the natural flow during the wet season and
control up to ∼ 89 % of the dry-season flow at Chiang Sean station, located nearby the
outlet of the Lancang Basin.

In the second problem (Chapter 3), we leverage satellite data to solve the problem of
the lack of data for calibrating macro-scale hydrological models in poorly gauged and
heavily regulated basins. Those data include reservoir operations, which, if omitted,
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can affect model parameterization, and observed river discharge data, which the simu-
lated discharge is compared against to adjust the tuning parameters of the model. For
the lack of data on reservoir operations, we make use of the result of the first prob-
lem. For the lack of river discharge data, we use a new approach. Specifically, we first
couple our hydrological VIC-Res model with a hydraulic model, which converts satel-
lite altimetry water level data to river discharge for model calibration. Using Global
Sensitivity Analysis, we find a strong co-dependence between the parameterization of
the Manning coefficient—the parameter in the hydraulic model—and the performance
metrics that we use to evaluate the accuracy of VIC-Res. The results provided by sen-
sitivity analysis help us to constrain the parameter of the hydraulic model. Finally, we
carry out a calibration exercise for the hydrological model with the aid of ε-NSGA-II
(a multi-objective optimization algorithm). We apply our approach to the same study
site in the first problem—the Lancang River Basin. The performances of model calibra-
tion with remote-sensed discharge data and validation with observed discharge data
at Chiang Saen show a remarkable result if we consider that no gauged data were used.

In the last problem (Chapter 4), we use a simulation-optimization approach, which in-
cludes a hydrological model—VIC-Res—and a multi-objective evolutionary algorithm—ε-
NSGA-II to optimize the filling strategy for the Lancang dam system. By parameteriz-
ing the filling strategy, and changing the parameters in their feasible ranges with the
aid of ε-NSGA-II, we explore a large number of alternative filling strategies. VIC-Res
model simulates the filling process based on the input of the filling strategy and calcu-
lates reservoir release and downstream discharge. Those outputs are used to calculate
the objective functions, which ε-NSGA-II uses to evaluate and adjust the filling strategy
parameters. Our experiment results in 280 non-dominated solutions equivalent to 280
optimal filling strategies. Interestingly, the actual filling strategy behaves like a non-
dominated solution. Our analysis shows that the actual filling strategy is favorable for
upstream with a high value of average annual hydropower production and a high level
of downstream flow alteration. Lastly, we show that if one of the more balanced fill-
ing strategies was applied instead of the actual strategy, the upstream country would
have received slightly less hydropower, however, there would have been a significant
decrease in the level of downstream flow alteration.

5.2 Future Works

From the limitations discussed in each chapter, we notice that there are several areas for
further improvement. First, the data on reservoir operations that we produced have a
monthly temporal solution. However, research on hydrology and water management
often requires a better temporal solution (e.g., weekly and daily). In this regard, we
think about synthesizing data from multiple satellite missions. Specifically, we would
like to use a data fusion approach using other satellite images (e.g., MODIS, Sentinel)
to create Landsat-like data (Wu et al., 2016; Salehi et al., 2021). Second, the approach
that we use to construct the river cross-section only works well for a few locations (i.e.,
where the topography is in natural condition). It means the satellite data collected
at many locations are not exploited. In this regard, we can develop a new approach
for constructing river cross-sections, which is applicable to any or most of the locations
along the river network. By doing that, we can exploit better the source of satellite data.
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One of the ideas that we have in mind is a knowledge transfer model (Y. Liu et al., 2010),
which is trained with a large number of surveyed river cross-sections and used to con-
struct river cross-sections in unsurveyed areas based on the available remote-sensed
data around the location of river cross-sections.

In regard to applications, a potentially impactful work is to build supporting tools or
databases for riparian countries in managing transboundary water. First, based on
the approach in Chapter 2, a tool for (near) real-time reservoir operation monitoring
can be developed. This tool is absolutely helpful in the case that the upstream coun-
ties do not share the data. Besides, when the upstream countries agree to be part of
basin water agreements/treaties, this tool will be an unbiased monitoring tool to make
sure that the agreements/treaties (e.g., commitment to maintaining a certain amount
of release from reservoirs to downstream) are implemented efficiently. It is also worth
noting that there are existing reservoir operation monitoring tools (e.g., Mekong Dam
Monitor (Eyler, Basist, et al., 2020) and RAT (Biswas, F. Hossain, Bonnema, Lee, et al.,
2021)). However, as discussed in 1.2 and 2.1, all satellite data have their own limi-
tations, which affect the usability of the tool using those data. The algorithm in our
approach for removing the effect of cloud cover in Landsat images can increase the
usability of the tool. Second, with the reliability of hydrological models in heavily reg-
ulated and poorly gauged river basins improved, we can build a database of river dis-
charge. This database is absolutely helpful for downstream countries in transboundary
river basins because knowing how much water and when they can receive water from
upstream is necessary for preparing their water management and adaptation plans.

Lastly, the approach to optimize the reservoir filling strategy (Chapter 4) is helpful,
especially in the context when there are more and more dams being constructed and
planned to be built in the transboundary river basins (WLE Mekong, 2016; Schmitt
et al., 2019; Wang et al., 2022). Although the filling strategy is decided by the upper
countries (the dam owners), the assessment of the planned filling strategies could be
a strong supporting point for the downstream countries in their negotiation with the
upper countries for a more ’friendly’ filling strategy. However, it is also worth noting
that negotiations among riparian countries over the filling strategy of new dams are
also affected by other factors such as the relationship among riparian countries, the
potential of economy or military of riparian countries. Another research avenue that
can be developed from Chapter 4 is to design the filling strategy for planned reservoirs
with meteorology and stream flow forecast under the impacts of climate change. Under
the impacts of climate change, there will be more extreme weather events. In addition,
the impacts of climate change on the transboundary river basins—which are often large
and may spread across different climate regions—are different throughout the basin
(Hansford, Plink-Björklund, and Jones, 2020). Such research could be interesting and
beneficial for all riparian countries.
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Appendix A

Supplement of Chapter 2

TEXT A.1: Commonalities and differences between our study and the Mekong Dam
Monitor

Both our study and the Mekong Dam Monitor (MDM) are based on the idea of ex-
tracting the water extent of the reservoirs from satellite images and then converting it
into water level and storage by using the information from a Digital Elevation Model
(DEM). However, there are a few key differences. First, we use an image improve-
ment algorithm, which is important and necessary because it enables us to extract the
information on reservoir storage from Landsat images for a long period (2008–2020).
Meanwhile, to avoid the cloud contamination in satellite images, MDM looks to other
remote sensing products, such as the Sentinel-SAR (Synthetic Aperture Radar), which
can “pierce” through clouds. However, Sentinels were launched recently (in April
2014), so the information before that time (including the construction and filling pe-
riods of five reservoirs on the mainstream of the Lancang) cannot be revealed. Second,
with the water extent estimation provided by our algorithm, we directly infer water
level and storage through the elevation-area-storage curves estimated from the DEM.
Meanwhile, MDM calculates the average elevation at the reservoir shoreline, and then
converts it into storage. This way may not work well for all water surface images. Fi-
nally, to strengthen our results, we make use of water level from Altimetry data (where
available) to validate the results obtained by processing the Landsat images.
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TABLE A.1: Design specifications of the hydropower dams on the main-
stream of the Lancang River. Retrieved from Do et al. (2020).

Dam Max Dead Max Dead Full Installed
Name COM height WL WL WSA storage storage capacity

(m) (m a.s.l.) (m a.s.l.) (km²) (MCM) (MCM) (MW)

Jinghong 2009 108 602 595 510 810 1119 1750
Nuozhadu 2014 262 812 756 320 10414 21749 5850
Dachaoshan 2003 115 899 887 826 465 740 1350
Manwan 1992 132 994 982 415 630 887 1670
Xiaowan 2010 292 1236 1162 194 4750 14645 4200
Gongguoqiao 2012 105 1319 1311 343 196 316 900
Miaowei 2016 140 1408 1373 171 359 660 1400
Dahuaqiao 2018 106 1477 1466 148 252 293 920
Huangdeng 2017 203 1619 1604 199 1031 1418 1900
Tuoba 2023 158 1735 1725 177 735 1039 1400
Lidi 2019 74 1818 1813 4 57 71 420
Wunonglong 2018 138 1906 1894 163 236 272 990

COM Commission year
WL Water level
WSA Water surface area

FIGURE A.1: Comparison between Landsat-derived water level (green
line), Jason altimetry water level (blue dots), and Sentinel-1-derived wa-
ter level (orange dashed line) archived from Mekong Dam Monitor plat-
form for Nuozhadu (left) and Xiaowan (right) reservoirs. Note that Jason
has a 10-day temporal resolution and Sentinel-1 have a frequency of up
to 6 days (Sentinel-1A and B have a frequency of 12 days and interleave
to each other). The comparison shows that the use of a monthly resolu-

tion yields the same trajectories of a weekly one.



Appendix A. Supplement of Chapter 2 79

FIGURE A.2: E-A, A-S, and E-S curves of Bhumibol reservoir (top) and
Ubol Ratana reservoir (bottom). The curves are represented by light blue
lines, which are fitted to the data points (blue circles) derived from the
DEM data. Note that the curves intersect the points identified by maxi-
mum water level, maximum water surface area, and full storage volume
(dashed lines) as well as those identified by dead water level and dead
storage volume (dotted lines). The green lines reported in panels (c) and
(f) correspond to the observations by Electricity Generating Authority of

Thailand (EGAT).
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TABLE A.2: The differences in storage corresponding to each water level
in the variation range of Xiaowan and Nuozhadu reservoirs obtained by
using the trapezoidal approximation [1] and direct calculation from the

DEM [2].

Xiaowan Nuozhadu

Water level Storage [1] Storage [2] Difference Water level Storage [1] Storage [2] Difference
(m) (MCM) (MCM) (%) (m) (MCM) (MCM) (%)

1162 4077 4149 1.74 766 10501 10678 1.67
1164 4223 4298 1.74 768 10859 11042 1.65
1166 4375 4452 1.73 770 11227 11414 1.64
1168 4531 4611 1.74 772 11605 11797 1.63
1170 4693 4776 1.74 774 11992 12189 1.62
1172 4862 4948 1.74 776 12390 12592 1.61
1174 5036 5126 1.74 778 12798 13005 1.59
1176 5217 5309 1.74 780 13216 13428 1.58
1178 5403 5498 1.73 782 13645 13862 1.57
1180 5595 5692 1.71 784 14084 14307 1.56
1182 5792 5892 1.70 786 14534 14763 1.55
1184 5994 6096 1.68 788 14995 15230 1.54
1186 6201 6306 1.67 790 15468 15709 1.53
1188 6413 6520 1.65 792 15953 16199 1.52
1190 6630 6741 1.64 794 16450 16702 1.51
1192 6853 6966 1.62 796 16958 17217 1.50
1194 7081 7197 1.61 798 17479 17743 1.49
1196 7316 7434 1.60 800 18012 18283 1.48
1198 7555 7677 1.59 802 18557 18834 1.47
1200 7801 7925 1.57 804 19115 19399 1.46
1202 8052 8179 1.56 806 19686 19975 1.45
1204 8308 8438 1.54 808 20269 20565 1.44
1206 8570 8703 1.53 810 20865 21167 1.43
1208 8838 8974 1.51 812 21473 21781 1.42
1210 9112 9251 1.50
1212 9392 9534 1.49
1214 9678 9823 1.47
1216 9970 10118 1.46
1218 10268 10419 1.45
1220 10572 10726 1.44
1222 10882 11039 1.42
1224 11198 11358 1.41
1226 11521 11684 1.40
1228 11849 12015 1.38
1230 12184 12353 1.37
1232 12525 12697 1.36
1234 12872 13047 1.35
1236 13225 13404 1.33
1238 13584 13766 1.32
1240 13950 14134 1.30
1242 14321 14508 1.29
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TABLE A.3: Spectral indices for water surface extraction.

Index Formula Recommended threshold values

NDVI (Red - Green)/(Red + Green)
0 (Zhai et al., 2015)
and 0.1 (Huilin Gao, C. Birkett, and Lettenmaier, 2012)

NDWI (Green - NIR)/(Green + NIR) 0 (Zhai et al., 2015; Bonnema and F. Hossain, 2017)
MNDWI (Green - MIR)/(Green + MIR) 0 and 0.1 Duan and Bastiaanssen, 2013

NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
MNDWI Modified Normalized Difference Water Index
NIR Near Infrared
MIR Middle Infrared
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TABLE A.4: Performance of the water surface area estimation algorithm
for the reservoirs on the Lancang River.

Percentage of usable images
Reservoir Number of

available images
Before improvement After improvement

Dry season (Dec-May)

Jinghong 175 24 % 89 %
Nuozhadu 187 27 % 89 %
Dachaoshan 187 26 % 89 %
Manwan 187 25 % 85 %
Xiaowan 187 27 % 88 %
Gongguoqiao 173 34 % 75 %
Miaowei 173 36 % 84 %
Dahuaqiao 173 36 % 82 %
Huangdeng 164 34 % 85 %
Wunonglong 164 34 % 73 %
Total 1770 30 % 84 %

Wet season (Jun-Nov)

Jinghong 122 20 % 80 %
Nuozhadu 127 13 % 69 %
Dachaoshan 130 16 % 76 %
Manwan 131 18 % 77 %
Xiaowan 130 16 % 88 %
Gongguoqiao 118 23 % 69 %
Miaowei 118 27 % 90 %
Dahuaqiao 118 28 % 81 %
Huangdeng 120 27 % 78 %
Wunonglong 120 20 % 81 %
Total 1234 21 % 79 %

Total

Jinghong 297 22 % 85 %
Nuozhadu 314 21 % 81 %
Dachaoshan 317 22 % 84 %
Manwan 318 22 % 82 %
Xiaowan 317 23 % 88 %
Gongguoqiao 291 29 % 72 %
Miaowei 291 32 % 87 %
Dahuaqiao 291 33 % 81 %
Huangdeng 284 31 % 82 %
Wunonglong 284 28 % 76 %
Total 3004 26 % 82 %
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TABLE A.5: Quantitative comparison of Landsat-derived and altimetry-
converted water surface area.

Reservoir R (CC) RMSE (km²) NRMSE

Nuozhadu 0.994 13.941 0.049
Xiaowan 0.977 9.901 0.062
Huangdeng 0.977 1.884 0.077
Jinghong 0.558 0.428 0.020

TABLE A.6: The statistical indices of the annual peak and lowest dis-
charge at Chiang Saen station for two periods: before and after the two

biggest dams (Nuozhadu and Xiaowan) began operations.

Peak Discharge (cms) Lowest Discharge (cms)

Mean Q1 Median Q3 Mean Q1 Median Q3

1990 - 2008 11157 9235 10700 12350 638 551 599 759
2013 - 2020 6476 5213 6834 7866 966 844 975 1077

Change -45 % -45 % -43 % -42 % 57 % 69 % 65 % 42 %
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FIGURE A.3: Water surface area (a,b) and storage variations (c,d) of Bhu-
mibol reservoir (left) and Ubol Ratana reservoir (right). In panels (a,b),
note the drastic difference in WSA values before (light blue points) and
after (cyan points) the classification improvement. The corrected values
of WSA are well in agreement with those converted from observed wa-
ter level (EGAT) through E-A curves (blue dashed lines). In panels (c,d),
note the similarity in the storage volume derived from Landsat images

(cyan dotted lines) and observed data from EGAT (blue lines).
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FIGURE A.4: E-S curve of Nouzhadu (left) and Xiaowan (right) reser-
voirs obtained by using the trapezoidal approximation and direct calcu-

lation from the DEM.

FIGURE A.5: Performance of three spectral indices (NDVI, NDWI, and
MNDWI) in extracting the water surface area of Xiaowan reservoir. Re-
sults are reported for three threshold values, 0, 0.05, and 0.1, and com-
pared to the Maximum Water Extent dataset, developed by the European
Commission’s Joint Research Centre (Pekel et al., 2016). The meaning of

the three indices is explained in Table A.3.
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FIGURE A.6: Performance of three spectral indices (NDVI, NDWI, and
MNDWI) in extracting the water surface area of Nuozhadu reservoir.
Results are reported for three threshold values, 0, 0.05, and 0.1, and com-
pared to the Maximum Water Extent dataset, developed by the European
Commission’s Joint Research Centre (Pekel et al., 2016). The meaning of

the three indices is explained in Table A.3.
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FIGURE A.7: Comparison of the simulated discharge by VIC-Res (blue
dots) and observed discharge (grey line) at Chiang Sean for the period
2009-2019 (filling period of Xiaowan and Nuozhadu reservoirs). Ob-

served data are archived from Mekong River Commission (MRC).

FIGURE A.8: Comparison of storage derived from Landsat images and
VIC-Res model for Nuozhadu (left) and Xiaowan (right) reservoirs.
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FIGURE A.9: E-A, A-S and E-S curves of Jinghong, Dachaoshan, Man-
wan and Gongguoqiao reservoirs.
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FIGURE A.10: E-A, A-S and E-S curves of Miaowei, Dahuaqiao, Huang-
deng and Wunonglong reservoirs.
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FIGURE A.11: Water surface area of Huangdeng (top) and Jinghong
(bottom) reservoirs. Note the drastic difference in WSA values before
(lightblue points) and after (cyan points) the classification improvement.
The corrected values of WSA are well in agreement with those obtained

through altimetry water level data and E-A curves (dark blue points)
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FIGURE A.12: Storage variation of reservoirs on the Lancang River.
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FIGURE A.13: Operation curves of 8 reservoirs (Jinghong, Dachaoshan,
Manwan, Gongguoqiao, Miaowei, Dahuaqiao, Huangdeng and Wunon-

glong).
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FIGURE A.14: Upper panel: graphical illustration of total storage and
discharge at Chiang Saen station. Middle panel: wavelet analysis of the
discharge. Colors represent wavelet power, while confidence level con-
tours identify statistically significant power. The flow regime changed in
2014, when Nuozhadu reservoir started its normal operations. Bottom
panel: wavelet coherency and phase between discharge and reservoir
storage. Contours identify statistically significant coherencies. The vec-

tors indicate the phase difference between discharge and storage.
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TABLE B.1: List of Landsat 5 images used to identify the river cross-
section at the virtual station.

ID Collection date River width Water level∗

(dd/mm/yyyy) (m) (m)

LT05_L1TP_129046_20080929_20161029_01_T1 29/09/2008 240 298.36
LT05_L1TP_129046_20081015_20161029_01_T1 15/10/2008 240 297.47
LT05_L1TP_129046_20081202_20170111_01_T1 02/12/2008 210 291.89
LT05_L1TP_129046_20081218_20170111_01_T1 18/12/20008 210 290.75
LT05_L1TP_129046_20090119_20161028_01_T1 19/01/2009 210 288.80
LT05_L1TP_129046_20090220_20161027_01_T1 20/02/2009 180 287.39
LT05_L1TP_129046_20090308_20161029_01_T1 08/03/2009 180 286.77
LT05_L1TP_129046_20091018_20161019_01_T1 18/10/2009 210 293.50
LT05_L1TP_129046_20091103_20161023_01_T1 03/11/2009 210 292.51
LT05_L1TP_129046_20091205_20161017_01_T1 05/12/2009 210 288.93
LT05_L1TP_129046_20100207_20161017_01_T1 07/02/2010 180 285.88
LT05_L1TP_129046_20100223_20161016_01_T1 23/02/2010 180 284.06
LT05_L1TP_129046_20100428_20161015_01_T1 28/04/2010 180 287.85
LT05_L1TP_129046_20100514_20161015_01_T1 14/05/2010 180 287.22
LT05_L1TP_129046_20100903_20161014_01_T1 03/09/2010 240 297.37
LT05_L1TP_129046_20101106_20161012_01_T1 06/11/2010 210 293.59
LT05_L1TP_129046_20110125_20161010_01_T1 25/01/2011 210 288.38
LT05_L1TP_129046_20110210_20161010_01_T1 10/02/2011 180 287.45
LT05_L1TP_129046_20110415_20161209_01_T1 15/04/2011 180 287.74

∗ obtained by Jason-2/3 on the corresponding day
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TABLE B.2: Model calibration performance calculated for 12 selected
solutions, i.e., those yielding the top 25 % performance in terms of NSE,
TRMSE, MSDE, and ROCE. The performance metrics are calculated by
comparing simulated and remote-sensed discharge at the virtual station.

No. NSE TRMSE MSDE ROCE

1 0.689 3.353 891526 0.035
2 0.689 3.353 891388 0.035
3 0.689 3.354 890904 0.035
4 0.688 3.360 897298 0.040
5 0.687 3.356 891553 0.030
6 0.687 3.345 908805 0.033
7 0.687 3.345 908805 0.033
8 0.686 3.343 891400 0.036
9 0.686 3.343 891400 0.036

10 0.686 3.343 890948 0.036
11 0.686 3.343 891457 0.036
12 0.686 3.337 891369 0.039
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TABLE B.3: Model validation performance calculated for the 12 selected
solutions, i.e., those yielding the top 25 % performance in terms of NSE,
TRMSE, MSDE, and ROCE. The performance metrics are calculated by

comparing simulated and observed discharge at Chiang Saen station.

No. NSE TRMSE MSDE ROCE

1 0.616 3.908 1062099 0.169
2 0.608 3.919 1058180 0.183
3 0.608 3.919 1058419 0.183
4 0.608 3.920 1057966 0.183
5 0.599 3.891 1058223 0.170
6 0.598 3.904 1058282 0.177
7 0.598 3.904 1058282 0.177
8 0.598 3.906 1058083 0.178
9 0.598 3.905 1058305 0.178

10 0.596 3.935 1058645 0.195
11 0.594 3.911 1071282 0.187
12 0.594 3.911 1071282 0.187
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TABLE B.4: Model calibration performance calculated for the 58 selected
solutions (the Pareto front) from model calibration. The performance
metrics are calculated between simulated and remote-sensed discharge

at the virtual station.

No. NSE TRMSE MSDE ROCE No. NSE TRMSE MSDE ROCE

1 0.698 3.375 1065802 0.041 30 0.688 3.330 1119978 0.027
2 0.697 3.363 1064265 0.046 31 0.688 3.372 883766 0.038
3 0.696 3.420 1104404 0.013 32 0.687 3.265 1240258 0.057
4 0.696 3.333 1296485 0.022 33 0.687 3.356 891553 0.030
5 0.696 3.374 1061290 0.042 34 0.687 3.336 897516 0.047
6 0.695 3.377 1060950 0.041 35 0.687 3.410 884122 0.035
7 0.695 3.379 1039961 0.040 36 0.687 3.407 885826 0.036
8 0.695 3.301 1298463 0.032 37 0.687 3.345 908805 0.033
9 0.694 3.366 1172060 0.028 38 0.687 3.398 883010 0.037

10 0.694 3.300 1296746 0.032 39 0.686 3.432 854452 0.038
11 0.694 3.301 1297546 0.032 40 0.686 3.343 891400 0.036
12 0.693 3.329 973419 0.041 41 0.686 3.343 890948 0.036
13 0.693 3.324 963126 0.041 42 0.686 3.420 883425 0.037
14 0.693 3.311 1300094 0.024 43 0.686 3.337 891369 0.039
15 0.692 3.310 1298422 0.024 44 0.685 3.271 1238422 0.059
16 0.692 3.303 1121617 0.032 45 0.685 3.447 864589 0.037
17 0.692 3.305 1118386 0.031 46 0.685 3.465 858494 0.037
18 0.692 3.286 1237423 0.039 47 0.681 3.422 880224 0.045
19 0.691 3.307 977172 0.043 48 0.680 3.348 1286568 0.024
20 0.691 3.387 1170933 0.018 49 0.679 3.363 1269557 0.018
21 0.691 3.308 1230897 0.025 50 0.679 3.379 1254975 0.014
22 0.690 3.386 1174178 0.019 51 0.673 3.452 793084 0.037
23 0.690 3.387 1174042 0.019 52 0.672 3.425 792973 0.028
24 0.690 3.295 1244238 0.038 53 0.670 3.428 793443 0.026
25 0.690 3.324 962490 0.049 54 0.670 3.428 793443 0.026
26 0.689 3.299 1244769 0.037 55 0.670 3.428 793443 0.026
27 0.689 3.353 891526 0.035 56 0.670 3.428 793443 0.026
28 0.689 3.353 891388 0.035 57 0.656 3.545 1285269 0.007
29 0.689 3.354 890904 0.035 58 0.646 3.588 892415 0.001
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TABLE B.5: Model validation performance calculated for the 58 selected
solutions (the Pareto front) from model calibration. The performance
metrics are calculated between simulated and observed discharge at Chi-

ang Saen station.

No. NSE TRMSE MSDE ROCE No. NSE TRMSE MSDE ROCE

1 0.637 3.928 989984 0.174 30 0.594 3.911 1071282 0.187
2 0.635 3.897 988499 0.170 31 0.592 3.871 1211314 0.223
3 0.634 3.924 1002652 0.173 32 0.592 3.872 1211245 0.223
4 0.632 3.716 1093794 0.139 33 0.591 3.846 1335416 0.117
5 0.631 3.745 1093664 0.157 34 0.588 4.032 993374 0.201
6 0.625 3.944 1047262 0.158 35 0.586 3.845 1336296 0.123
7 0.624 3.731 1094157 0.152 36 0.581 4.041 994241 0.206
8 0.623 3.733 1094213 0.154 37 0.581 4.041 994241 0.206
9 0.622 3.737 1081727 0.156 38 0.581 4.041 994241 0.206

10 0.621 3.967 1050516 0.180 39 0.581 4.041 994241 0.206
11 0.620 3.851 1108955 0.143 40 0.574 3.923 1334334 0.174
12 0.619 3.957 1052596 0.180 41 0.570 3.950 1376977 0.192
13 0.619 3.948 1050599 0.177 42 0.569 3.928 1337789 0.177
14 0.619 3.963 1051327 0.183 43 0.568 3.960 949657 0.292
15 0.618 3.861 1059505 0.148 44 0.567 3.932 1337865 0.179
16 0.616 3.927 1051718 0.176 45 0.567 3.947 1248912 0.193
17 0.614 3.885 1119650 0.166 46 0.567 3.942 1386466 0.187
18 0.613 3.880 1112699 0.165 47 0.566 3.944 1386968 0.187
19 0.610 3.842 1207660 0.197 48 0.566 3.953 1246566 0.196
20 0.609 4.022 990455 0.180 49 0.566 3.942 1388012 0.188
21 0.608 3.919 1058180 0.183 50 0.564 4.001 1389071 0.218
22 0.608 3.919 1058419 0.183 51 0.561 3.970 1327052 0.214
23 0.605 3.883 1088908 0.171 52 0.557 3.977 1246317 0.205
24 0.602 3.847 1119397 0.159 53 0.553 3.981 1318489 0.243
25 0.599 3.891 1058223 0.170 54 0.552 3.975 1388532 0.211
26 0.598 3.904 1058282 0.177 55 0.551 3.973 1389883 0.210
27 0.598 3.841 1133345 0.236 56 0.545 3.992 1368735 0.216
28 0.598 3.906 1058083 0.178 57 0.539 4.015 1353742 0.232
29 0.596 3.935 1058645 0.195 58 0.512 4.190 1053505 0.276
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FIGURE B.1: Approach for constructing the river cross-section at the vir-
tual station (a) and elements of the river cross-section used to construct
the rating curve (b). Note that the approach builds on multiple satellite
data, namely DEM, altimetry, and river width (derived from Landsat

images).
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FIGURE B.2: Comparison between remote-sensed (RS) and simulated
discharge at the virtual station. The range of variability of the RS dis-
charge is represented by the medium blue band, while the range of sim-
ulated discharge (corresponding to new range of Manning’s coefficient
n ∈ [0.04-0.052]) is represented by the light green band. The RS discharge
estimated with n = 0.046 is illustrated by the dark blue line. Finally, the
dotted orange line illustrates the discharge estimated by scaling the dis-

charge observed at Chiang Saen by the area ratio.
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FIGURE B.3: Comparison of discharge time series obtained during cal-
ibration at the virtual station (a) and validation at Chiang Saen station
(b). The dark green band depicts the range of variability of 58 selected
solutions (corresponding to the Pareto front), while the light green band
corresponds to the range of variability of 40 solutions selected in the sen-
sitivity analysis. In panel (a), the dark blue line represents the remote-
sensed discharge at the virtual station (with n = 0.046), while the dotted
orange line corresponds to the discharge estimated by scaling the dis-
charge observed at Chiang Saen by the area ratio. In panel (b), the dotted

orange line illustrates the observed discharge at Chiang Saen.
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FIGURE C.1: Filling strategy of Jinghong, Manwan, Dachaoshan,
Gonguoqiao, Miaowei, Dahuaqiao, Huangdeng, and Wunonglong reser-

voirs.
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